РД 50-25645.217-90
Группа Ф40
РУКОВОДЯЩИЙ НОРМАТИВНЫЙ ДОКУМЕНТ
МЕТОДИЧЕСКИЕ УКАЗАНИЯ
Безопасность радиационная экипажа космического аппарата
в космическом полете
МЕТОДИКИ РАСЧЕТА МИКРОДОЗИМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК
КОСМИЧЕСКИХ ИЗЛУЧЕНИЙ
ОКСТУ 6968
Дата введения 1991-07-01
ИНФОРМАЦИОННЫЕ ДАННЫЕ
1. РАЗРАБОТАН И ВНЕСЕН Минздравом СССР
РАЗРАБОТЧИКИ
A.С.Александров, д-р физ.-мат. наук; С.Г.Андреев, канд. физ.-мат. наук; П.Н.Белоногий, канд. физ.-мат. наук; B.Г.Виденский, д-р биол. наук; А.А.Волобуев; А.И.Григорьев, д-р мед. наук; А.Т.Губин, канд. физ.-мат. наук; А.Н.Деденков, д-р мед. наук; В.И.Иванов, д-р физ.-мат. наук; Е.Е.Ковалев, д-р техн. наук; Е.Н.Лесновский, канд. техн. наук; Ю.Л.Минаев; В.А.Панин; Е.В.Пашков, канд. техн. наук; С.М.Перфильева; В.А.Питкевич, канд. физ.-мат. наук; В.А.Сакович, д-р физ.-мат. наук
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 27.03.90 N 624
3. ВВЕДЕН ВПЕРВЫЕ
4. Срок первой проверки - III кв. 1996 г.; периодичность проверки - 5 лет
5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Обозначение НТД, на который дана ссылка |
Номер пункта, приложения |
РД 50-25645.206-84 |
2.3, 3.3 |
ГОСТ 15484-81* |
Приложение 1 |
ГОСТ 18622-79 |
Приложение 4 |
_______________
* На территории Российской Федерации действует РМГ 78-2005, здесь и далее по тексту. - Примечание изготовителя базы данных.
Настоящие методические указания устанавливают методики расчета спектров линейной энергии для тяжелых заряженных частиц (далее - ТЗЧ) с зарядом от 1 до 32 единиц абсолютной величины заряда электрона и энергией на нуклон от 0,1 до 10 МэВ в тканеэквивалентном веществе при размерах шарового микрообъема от 0,1 до 20 мкм.
Методические указания предназначены для расчетов микродозиметрических характеристик полей ионизирующих излучений (далее - микродозиметрических характеристик), воздействующих на биологические объекты в космических полетах.
Пояснения терминов, применяемых в методических указаниях, приведены в приложении 1.
1. ОБЩИЕ ПОЛОЖЕНИЯ
1.1. Под линейной энергией , кэВ/мкм, понимают относящуюся к событию поглощения стохастическую величину, равную частному от деления фактически поглощенной в микрообъеме энергии на среднюю длину его хорды
. (1)
Для шарового микрообъема диаметром: .
Различают частотный и дозовый спектры линейной энергии (далее - СЛЭ). Под частотным СЛЭ , мкм/кэВ, понимают относительное число событий поглощения в микрообъеме, приходящихся на элементарный интервал значений линейной энергии в окрестности . Под дозовым СЛЭ , мкм/кэВ, понимают относительную долю поглощенной дозы, приходящейся на элементарный интервал значений линейной энергии в окрестности . Частотный и дозовый СЛЭ нормированы на единицу.
1.2. В качестве основных микродозиметрических характеристик выбирают частотный и дозовый СЛЭ, а также определяемые по ним частотное и дозовое средние значения линейной энергии:
; (2)
; (3)
Другие микродозиметрические характеристики вычисляют по , , и с помощью соотношений, приведенных в приложении 2.
1.3. Методики, представленные в разд.2 и 3, основаны на предположениях, что при расчете СЛЭ пренебрегают:
- кривизной траекторий ТЗЧ вблизи и внутри микрообъема;
- дополнительными событиями поглощения в микрообъеме и изменением энергий заряженных частиц, обусловленными ядерными взаимодействиями и радиационными потерями вблизи и внутри микрообъема.
1.4. СЛЭ для ТЗЧ, рассчитываемые по методикам разд.2 и 3, относятся к шаровому микрообъему, выделенному в однородном тканеэквивалентном веществе.
1.5. Методика расчета СЛЭ по методу Монте-Карло (разд.2) установлена для случая, когда относительная погрешность вычисления или , обусловленная пренебрежением разбросом энергетических потерь заряженных частиц вблизи и внутри микрообъема и переносом энергии дельта-электронами, превышает 5 и 10% соответственно. В случае непревышения этих пределов используют аналитическую методику, установленную в разд.3.
2. МЕТОДИКА РАСЧЕТА СЛЭ МЕТОДОМ МОНТЕ-КАРЛО
2.1. Настоящая методика основана на моделировании методом Монте-Карло прохождения ТЗЧ, а также возникающих под их действием дельта-электронов вблизи и внутри микрообъема и вычислении поглощенных энергий в нем, соответствующих прохождениям отдельных ТЗЧ. Считают, что центр микрообъема помещен в начало декартовой системы координат {0, 0, 0}, а ТЗЧ движутся в направлении оси 0. Изменением энергии ТЗЧ в слое вещества толщиной, достаточной для установления электронного равновесия, пренебрегают.
В качестве исходных данных для расчета частотного и дозового СЛЭ выбирают:
- энергию , МэВ, атомный номер и массовое число ТЗЧ;
- диаметр , мкм, шарового микрообъема;
- значения линейной энергии , кэВ/мкм, определяющие интервалы =0, (=1, 2, ..., ) для усреднения значений СЛЭ. Полагают =0.
Примечание. Следует применять логарифмическую сетку, удовлетворяющую требованию, чтобы дополнительная погрешность вычисления дозового среднего значения линейной энергии по формуле
, (4)
связанная с выбором значений линейной энергии , не превышала 2%.
2.3. Вычисляют параметры, используемые в дальнейших расчетах при выбранных значениях , , , :
- максимальную энергию , кэВ, дельта-электрона по формулам:
; (5)
; (6)
; (7)
- линейную передачу энергии , кэВ/мкм, ТЗЧ в тканеэквивалентном веществе, относящуюся к немоделируемым столкновениям, по формуле
, (8)
где - ионизационные потери ТЗЧ в тканеэквивалентном веществе, кэВ/мкм;
- минимальная энергия моделируемых дельта-электронов, определяемая из соотношения: ={0,1; 0,007}, кэВ;
- средний эффективный потенциал ионизации вещества по РД 50-25645.206, кэВ;
=8,46·10·; (9)
; (10)
- граничную энергию , кэВ, дельта-электронов, до которой учитывается пространственная корреляция траекторий дельта-электронов с траекторией ТЗЧ, по формуле
(11)
где - практический пробег, мкм, электрона с энергией ;
- кинетическая энергия электрона, практический пробег которого равен , кэВ;
- долю ионизационных потерь ТЗЧ, , приходящуюся на дельта-электроны с энергией свыше , по формуле
; (12)
- радиус , мкм, сечения области моделирования плоскостью, перпендикулярной траектории ТЗЧ, по формуле
, (13)
где - практический пробег электрона с энергией .
Примечания:
1. Значения вычисляют при 2 МэВ/нуклон по РД 50-25645.206, а при <2 МэВ/нуклон - по данным табл.1 и формуле (124) приложения 3. Практические пробеги электронов определяют по данным табл.2 приложения 4.
2. Область моделирования - микрообъем и прилегающие к нему слои вещества, в пределах которых производится моделирование прохождения ТЗЧ и возникающих дельта-электронов с учетом пространственной корреляции их траекторий.
2.4. Область моделирования определяют неравенствами
; (14)
; (15)
. (16)
2.5. Алгоритм расчета СЛЭ для ТЗЧ, пересекающих область моделирования, состоит в следующем.
2.5.1. По очередному случайному числу , равномерно распределенному в интервале (0,1) (далее - очередному ), вычисляют декартовы координаты {, , } точки входа ТЗЧ в область моделирования для очередной -й истории по формулам:
; (17)
; (18)
. (19)
2.5.2. Вычисляют параметры -й истории:
- статистический вес координаты по формуле
; (20)
- координату , соответствующую точке выхода ТЗЧ из области моделирования, по формуле
; (21)
- угол между плоскостями, касательными к шару и пересекающимися по линии, совпадающей с траекторией ТЗЧ, по формуле
(22)
где - свободный параметр (<10), мкм, выбираемый из условия, чтобы вероятностью попадания в микрообъем дельта-электронов с энергией менее , вылетающих из точки возникновения с в противоположном по отношению к нему направлении, можно было бы пренебречь.
2.5.3. Среднюю энергию , кэВ, переданную ТЗЧ микрообъему в результате немоделируемых взаимодействий внутри него, рассчитывают следующим образом
(23)
Истинное значение энергии , кэВ, переданной в таких взаимодействиях, рассчитывают согласно п.2.5.4 в зависимости от значения
, (24)
где - макроскопическое сечение неупругих взаимодействий в тканеэквивалентном веществе с потерей энергии менее для ТЗЧ, мкм, определяемое по макроскопическому сечению соответствующих неупругих взаимодействий для электрона одинаковой с ТЗЧ скорости по формуле
. (25)
Значения рассчитывают по данным табл.4 приложения 4.
2.5.4. При =0 полагают =0.
При 0<20 полагают
, (26)
где - целое число, удовлетворяющее, при очередном , условиям:
.
При 20<400 полагают
,
где - случайное число, распределенное по нормальному закону.
При >400 полагают .
2.5.5. По очередному рассчитывают координату точки -гo взаимодействия ТЗЧ с веществом, сопровождающегося испусканием дельта-электрона с энергией между и :
, (27)
где - макроскопическое сечение ионизации с потерей энергии между и для ТЗЧ, проходящей на расстоянии от центра микрообъема, мкм.
Значения рассчитывают по формуле
, (28)
где (29)
а - энергия дельта-электрона, имеющего практический пробег
, кэВ.
2.5.6. При полагают и переходят к вычислениям п.2.5.11.
При по очередным и рассчитывают энергию , кэВ,
, (30)
значения величин и , характеризующих направление вылета дельта-электрона из точки {} относительно направления движения ТЗЧ
; (31)
(32)
и статистический вес энергии дельта-электрона
. (33)
2.5.7. При к текущему значению прибавляют .
При переходят к вычислениям п.2.6.
2.5.8. Вычисляют значения по формуле
. (34)
При 0 повторяют вычисления с п.2.5.5.
2.5.9. Расстояние от точки испускания -го дельта-электрона до ближайшей точки пересечения луча в направлении движения дельта-электрона с поверхностью вычисляют по формуле
. (35)
Далее переходят к п.2.6.
2.5.10. К текущему значению поглощенной энергии в микрообъеме добавляют вклад от -гo дельта-электрона и повторяют расчет, начиная с п.2.5.5.
2.5.11. При =0 переходят к п.2.5.1.
Значение линейной энергии и статистический вес для -й истории вычисляют по формулам:
; (36)
, (37)
где - номер дельта-электрона последнего перед выходом ТЗЧ из области моделирования.
Находят наименьшее значение индекса , при котором , где - выбранные узлы разбиения шкалы линейной энергии (=1, 2, ..., ). (Далее ).
2.5.12. В сумматоры , , и заносят вклады от -й истории, равные, соответственно, , , и :
; (38)
; (39)
; (40)
, (41)
где - символ Кронекера, определяемый как
(42)
2.5.13. В сумматор числа событий поглощения заносят единицу. При не кратном 20 повторяют вычисления по п.2.5.1.
2.5.14. Вычисляют и запоминают оценки частотного и дозового средних значений линейной энергии для очередной серии из 20 событий поглощения:
; (43)
, (43)
где - индекс, означающий, что помеченная им величина относится к -й серии, а также текущие значения и , полученные по всем событиям поглощения:
; (45)
. (46)
2.5.15. При выполнении условия (для >10)
и (47)
моделирование траекторий ТЗЧ прекращают, переходя к п.2.5.16, если иначе, то продолжают расчет, начиная с п.2.5.1.
2.5.16. Рассчитывают окончательные оценки частотного и дозового средних значений линейной энергии, частотный и дозовый СЛЭ для событий поглощения, обусловленных прохождением ТЗЧ через область моделирования, по формулам:
; (48)
; (49)
, 1, 2, ..., ; (50)
, 1, 2, ..., , (51)
где
. (52)
Далее переходят к вычислениям п.2.7.
2.6. Траектории дельта-электронов (далее - электронов) моделируют с учетом их кривизны и возможности рождения вторичных, третичных и т.д. поколений электронов. Процедура вычисления энергии , переданной электроном микрообъему, состоит в следующем.
2.6.1. Присваивают исходные значения сумматору поглощенных энергий =0, а также:
- направляющим косинусам единичного вектора , задающего начальное направление движения электрона в системе координат ,
, (53)
, (54)
. (55)
- координатам радиуса-вектора , задающего точку начала моделируемой траектории (=1, 2, 3):
(56)
- энергии электрона в точке :
* (57)
где - практический пробег электрона с энергией ;
* - энергия электрона, выраженная в единицах начальной его энергии, на глубине , выраженной в единицах .
_______________
* Формула и экспликация к ней соответствуют оригиналу. - Примечание изготовителя базы данных.
Значения и для интересующих энергий следует рассчитывать по данным табл.2 и 3 приложения 4.
2.6.2. Ограниченные линейные передачи энергии , кэВ/мкм, суммарное макроскопическое сечение , мкм, неупругих с передачей более =0,1 кэВ и упругих взаимодействий, полное , мкм, и парциальные , мкм, макроскопические сечения упругого рассеяния на элементах тканеэквивалентного вещества для электрона с энергией вычисляют по данным табл.4 и 5 приложения 4.
2.6.3. Длину пути , мкм, электрона до очередного моделируемого взаимодействия рассчитывают по формуле
, (58)
где - случайное число.
Координаты радиуса-вектора точки взаимодействия вычисляют по формуле (= 1, 2, 3):
. (59)
2.6.4. При расчет траектории электрона данного поколения прекращают. Проверяют, имеются ли электроны старшего поколения. Если имеются, то координатам вектора и направляющим косинусам присваивают ранее определенные значения, соответствующие самому младшему из нерассмотренных поколений электронов, и переходят к п.2.6.13, в противном случае возвращаются в п.2.5.10.
2.6.5. Длине части отрезка , принадлежащей микрообъему, присваивают в зависимости от знака параметра
(60)
следующие значения:
при 0 полагают = 0;
при >0 полагают
(61)
и
(62)
2.6.6. Тип взаимодействия в точке определяют по очередному :
если , то взаимодействие неупругое. Для его моделирования переходят к п.2.6.10.
2.6.7. Энергию электрона в точке вычисляют, вычитая из непрерывные потери . К текущему значению прибавляют порцию энергии, равную .
2.6.8. Элемент, на котором произошло упругое рассеяние, определяют по очередному путем выбора номера , удовлетворяющего условиям
. (63)
2.6.9. Величины и , определяющие направление вылета электрона из точки упругого взаимодействия, вычисляют по формулам
; (64)
, (65)
где и - очередные случайные числа;
(, ) - параметр экранирования ядра электронами при энергии налетающего электрона для ядра с атомным номером , определяемый согласно приложению 4.
Далее выполняют вычисления, начиная с п.2.6.14.
2.6.10. Потерю энергии электрона с энергией в точке неупругого взаимодействия вычисляют по очередному согласно алгоритму, изложенному в приложении 5.
Энергии электронов, покидающих точку , и косинусы углов , и , , определяющих направление вылета электронов из этой точки, рассчитывают по формулам:
; (66)
; (67)
; (68)
; (69)
; (70)
, (71)
где - очередное случайное число.
2.6.11. При к текущему значению прибавляют порцию энергии , вычисляемую по формуле
(72)
2.6.12. При кэВ запоминают радиус-вектор , вектор и значения , и , а переменным , , присваивают значения, соответствующие наиболее медленному из электронов, покидающих точку :
; (73)
; (74)
(75)
и переходят к п.2.6.14.
2.6.13. Переменным , и присваивают значения:
; (76)
; (77)
. (78)
2.6.14. В случае выполнения хотя бы одного из следующих условий:
, (79)
где - длина ионизационного пробега электрона с энергией
или
0,1 кэВ, (80)
моделирование траектории электрона данного поколения прекращают. При к текущему значению прибавляют . Если имеются электроны старшего поколения, то координатам вектора и направляющим косинусам присваивают ранее определенные значения, соответствующие самому младшему из нерассмотренных поколений электронов, и переходят к п.2.6.13, в противном случае возвращаются в п.2.5.10.
В случае невыполнения условий (79) и (80) переходят к следующему пункту.
2.6.15. Направляющие косинусы вектора , задающего направление движения рассматриваемого электрона из точки , вычисляют по следующим формулам:
; (81)
; (82)
. (83)
2.6.16. Координатам вектора и направляющим косинусам вектора присваивают новые значения (=1, 2, 3):
; (84)
(85)
и повторяют расчеты начиная с п.2.6.2.
2.7. При =0 расчет завершают, полагая искомые , , и равными , , и соответственно, а при >0 вычисляют их по формулам:
; (86)
; (87)
; (88)
, (89)
где помеченные индексом () величины относятся к событиям поглощения, формируемым дельта-электронами с энергиями свыше . Эти величины, одинаковые для всех ТЗЧ одной скорости, но разных зарядов, рассчитывают согласно п.2.8.
2.8. Методика расчета , , и , основанная на использовании приближения непрерывного замедления для вычисления дифференциального энергетического распределения электронов на поверхности сферы , концентричной рассматриваемому шаровому микрообъему диаметром , и моделировании прохождения электронов внутри этой сферы методом Монте-Карло состоит в следующем.
2.8.1. Нормированный на единицу интегральный спектр флюенса у поверхности сферы диаметром вычисляют по формулам:
, (90)
(91)
где - линейная передача энергии, кэВ/мкм, для электрона с энергией в тканеэквивалентном веществе, определяемая по данным табл.4 приложения 4.
2.8.2. Для точки вылета электрона в -й истории принимают =0, =0, = -/2, =1 и рассчитывают энергию , кэВ, и значение величины , характеризующей направление вылета электрона относительно оси , по формулам:
; (92)
, (93)
где - функция, обратная ;
, - последовательные случайные числа.
2.8.3. Выполняют вычисления согласно п.2.6 с той лишь разницей, что вместо предусмотренного в пп.2.6.4, 2.6.6 и 2.6.14 перехода в п.2.5.10, переходят в п.2.8.4.
2.8.4. В случае =0 повторяют вычисления с п.2.8.2, иначе полагают , и переходят к вычислениям пп.2.5.11-2.5.14, минуя формулу (37). При выполнении условия (47) дальнейшее моделирование траекторий не производят, а переходят в п.2.8.5. При невыполнении условия (47) повторяют вычисления с п.2.8.2.
2.8.5. Окончательные оценки искомых величин для событий поглощения, формируемых дельта-электронами с энергией более , рассчитывают по формулам:
; (94)
; (95)
; =1, 2, ...; (96)
; =1, 2, ..., (97)
где
3. АНАЛИТИЧЕСКАЯ МЕТОДИКА РАСЧЕТА СЛЭ
3.1. Методика основана на предположении, что разбросом энергетических потерь ТЗЧ на отрезках траекторий внутри микрообъема можно пренебречь и что вся потерянная ТЗЧ энергия поглощается в точках их взаимодействий с веществом.
3.2. В качестве исходных данных для расчетов частотного и дозового СЛЭ выбирают:
- энергию , МэВ, атомный номер и атомную массу ТЗЧ;
- диаметр , мкм, микрообъема.
3.3. Линейные передачи энергии , кэВ/мкм, и ионизационные пробеги , мкм, ТЗЧ в тканеэквивалентном веществе, используемые в расчетах, вычисляют при МэВ/нуклон по РД 50-25645.206, а при меньших энергиях - по формулам и данным приложения 3.
3.4. В случае, когда соблюдается условие
, (99)
применяют следующие формулы для СЛЭ, частотного и дозового средних значений линейной энергии:
; (100)
; (101)
; (102)
. (103)
3.5. В случае, когда условие (99) не соблюдается, частотный и дозовый СЛЭ представляют в виде:
; (104)
, (105)
где - постоянная величина, определяемая из условия нормировки на единицу
. (106)
Физический смысл и формулы для расчета каждого слагаемого при равномерно распределенных в среде источниках ТЗЧ приведены в пп.3.5.1-3.5.4.
3.5.1. Слагаемое определяет вклад в СЛЭ от ТЗЧ, треки которых полностью принадлежат микрообъему. Значения рассчитывают по формуле
(107)
где дельта-функция, а
. (108)
Здесь и далее .
3.5.2. Слагаемое определяет вклад в СЛЭ от ТЗЧ, треки которых начинаются внутри микрообъема, но заканчиваются вне его. Значения рассчитывают по формуле
(109)
где ,
. (110)
3.5.3. Слагаемое определяет вклад в СЛЭ от ТЗЧ, треки которых начинаются вне микрообъема, но заканчиваются внутри него. Значения рассчитывают по формуле
(111)
где .
3.5.4. Слагаемое определяет вклад в СЛЭ от ТЗЧ, пронизывающих микрообъем. Значения рассчитывают по формуле
(112)
где ,
. (113)
3.5.5. Частотное и дозовое средние значения линейной энергии рассчитывают по полученным и согласно формулам (2) и (3) соответственно.
ПРИЛОЖЕНИЕ 1
Справочное
ПОЯСНЕНИЯ К ТЕРМИНАМ, ПРИМЕНЯЕМЫМ
В МЕТОДИЧЕСКИХ УКАЗАНИЯХ
Термин |
Пояснение |
Микрообъем |
Объем, заключающий в себе достаточно малое количество вещества, чтобы при заданных поглощенной доле или числе событий поглощения статистическим разбросом поглощенной энергии в нем нельзя было бы пренебречь |
Событие поглощения |
Событие прохождения одной первичной ионизирующей частицы в рассматриваемой области вещества, приводящее к поглощению в микрообъеме отличной от нуля порции энергии |
Поглощенная энергия |
По ГОСТ 15484 |
Ионизирующая частица |
По ГОСТ 15484 |
Микродозиметрические характеристики поля ионизирующего излучения |
Функции и величины, характеризующие статистический разброс поглощенной энергии и других пропорциональных ей величин в микрообъемах вещества при заданных поглощенной дозе или числе событий поглощения |
Поглощенная доза |
По ГОСТ 15484 |
Дельта-электрон |
Электрон, выбиваемый из электронных оболочек атомов быстрыми заряженными частицами, движущимися через вещество |
Линейная передача энергии |
По ГОСТ 15484 |
Практический пробег электрона |
Точка пересечения касательной к кривой зависимости поглощенной дозы от глубины в поглотителе, построенной в точке наиболее быстрого спада поглощенной дозы, с осью глубин при нормальном падении широкого пучка электронов на поглотитель |
Ионизационные потери тяжелых заряженных частиц |
Средние потери тяжелых заряженных частиц на единицу пути, обусловленные их взаимодействием с электронными оболочками атомов тормозящей среды |
ПРИЛОЖЕНИЕ 2
Справочное
СВЯЗЬ ДРУГИХ МИКРОДОЗИМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК
СО СПЕКТРАМИ ЛИНЕЙНОЙ ЭНЕРГИИ (СЛЭ)
В микродозиметрии и ее приложениях, помимо линейной энергии , частотного и дозового СЛЭ, частотного и дозового средних значений линейной энергии, широко используют удельную энергию , частотную и дозовую плотности распределения удельной энергии в одиночном событии поглощения, частотное и дозовое средние значения удельной энергии, а также плотность распределения удельной энергии при заданной поглощенной дозе .
Под удельной энергией , Гр, понимают стохастическую величину, равную частному от деления фактически поглощенной в микрообъеме энергии , Дж, на массу , кг, содержащегося в нем вещества
. (114)
При , кэВ/мкм, , Гр, и диаметре шарового микрообъема , мкм, справедливы следующие соотношения:
; (115)
; (116)
; (117)
; (118)
. (119)
Для вычисления плотности распределения удельной энергии при заданной поглощенной дозе следует использовать формулу
, (120)
где - -кратная свертка от , определяемая с помощью рекуррентного соотношения
. (121)
При достаточно больших () и достаточно малых () поглощенных дозах вычисляют по формулам:
(122)
и
(123)
соответственно, где - дельта-функция.
ПРИЛОЖЕНИЕ 3
Справочное
ИОНИЗАЦИОННЫЕ ПОТЕРИ И ПРОБЕГИ ТЯЖЕЛЫХ ЗАРЯЖЕННЫХ ЧАСТИЦ (ТЗЧ
С ЭНЕРГИЯМИ НА НУКЛОН МЕНЕЕ 2 МэВ
Ионизационные потери , кэВ/мкм, в тканеэквивалентном веществе для ТЗЧ при энергиях на нуклон менее 2 МэВ следует рассчитывать по ионизационным потерям для протонов, представленным в таблице, согласно формуле:
, (124)
где - эффективный заряд ТЗЧ с зарядом ядра , определяемый формулой (10) разд.2.
Ионизационные пробеги , мкм, ТЗЧ, включая протоны, следует определять по ее ионизационным потерям согласно формуле
, (125)
где - энергия ТЗЧ, МэВ.
Таблица 1
Ионизационные потери протонов в тканеэквивалентном веществе
, МэВ |
, кэВ/мкм |
0,0010 |
26 |
0,0015 |
27 |
0,0020 |
29 |
0,0030 |
33 |
0,0040 |
38 |
0,0050 |
41 |
0,0060 |
44 |
0,0070 |
47 |
0,0080 |
50 |
0,0090 |
52 |
0,010 |
55 |
0,015 |
64 |
0,02 |
73 |
0,03 |
84 |
0,04 |
90 |
0,05 |
95 |
0,06 |
97 |
0,07 |
99 |
0,08 |
97 |
0,09 |
97 |
0,10 |
96 |
0,15 |
83 |
0,20 |
72 |
0,30 |
59 |
0,4 |
50 |
0,5 |
44 |
0,6 |
39 |
0,7 |
35 |
0,8 |
32 |
0,9 |
29 |
1,0 |
27 |
1,2 |
24 |
1,4 |
21 |
1,6 |
19 |
1,8 |
18 |
2,0 |
16 |
Примечание. Для получения при промежуточных значениях следует применять линейную интерполяцию в двойном логарифмическом масштабе, а при <0,001 МэВ/нуклон - линейную экстраполяцию в обычном масштабе.
ПРИЛОЖЕНИЕ 4
Справочное
ИСХОДНЫЕ ДАННЫЕ ДЛЯ МОДЕЛИРОВАНИЯ ТРАЕКТОРИЙ ЭЛЕКТРОНОВ
В ТКАНЕЭКВИВАЛЕНТНОМ ВЕЩЕСТВЕ
В табл.2 представлены значения практического пробега электрона в тканеэквивалентном веществе при энергиях в диапазоне от 0,1 до 200 кэВ. Значения для энергий этого диапазона, не представленных в табл.2, следует вычислять методом линейной интерполяции в двойном логарифмическом масштабе.
В табл.3 представлены значения функции , определяющей зависимость энергии электрона от глубины его проникновения , мкм, в тканеэквивалентное вещество
, (126)
где - начальная энергия электрона, кэВ;
- практический пробег, мкм, электрона с энергией .
Значения при промежуточных следует вычислять методом линейной интерполяции в обычном масштабе.
В табл.4 и 5 представлены значения ионизационных пробегов , полных и ограниченных линейных передач энергии, а также макроскопических сечений взаимодействия электронов в тканеэквивалентном веществе: полного макроскопического сечения неупругих взаимодействий , суммы неупругих взаимодействий с передачей энергии свыше =0,1 кэВ и полного упругих взаимодействий , полного упругих взаимодействий и макроскопических сечений упругих взаимодействий для отдельных элементов .
Значения представленных в табл.4 и 5 величин при промежуточных следует получать методом линейной интерполяции в двойном логарифмическом масштабе.
Таблица 2
Значения практического пробега электрона в тканеэквивалентном веществе
Энергия , кэВ |
Практический пробег , мкм |
0,1 |
0,008 |
0,2 |
0,011 |
0,5 |
0,020 |
1,0 |
0,043 |
2,0 |
0,115 |
5,0 |
0,515 |
10,0 |
1,74 |
20,0 |
6,06 |
50,0 |
32,4 |
100,0 |
116,0 |
200,0 |
350,0 |
Таблица 3
Значения функции для тканеэквивалентного вещества
| |
0,0 |
1,000 |
0,1 |
0,924 |
0,2 |
0,818 |
0,3 |
0,692 |
0,4 |
0,554 |
0,5 |
0,415 |
0,6 |
0,285 |
0,7 |
0,176 |
0,8 |
0,0944 |
0,9 |
0,0456 |
1,0 |
0,0185 |
1,1 |
0,0055 |
1,2 |
0,0011 |
1,3 |
0,0000 |
Таблица 4
Значения , , , и для электронов в тканеэквивалентном веществе
, кэВ |
, мкм |
, кэВ/мкм |
, кэВ/мкм |
, мкм |
, мкм |
0.10+00 |
0.111-01 |
0.297+02 |
0.297+02 |
0.152+04 |
0.103+04 |
0.15+00 |
0.128-01 |
0.307+02 |
0.307+02 |
0.137+04 |
0.799+03 |
0.20+00 |
0.145-01 |
0.282+02 |
0.282+02 |
0.121+04 |
0.662+03 |
0.30+00 |
0.183-01 |
0.248+02 |
0.224+02 |
0.956+03 |
0.522+03 |
0.40+00 |
0.226-01 |
0.220+02 |
0.190+02 |
0.793+03 |
0.430+03 |
0.50+00 |
0.275-01 |
0.186+02 |
0.154+02 |
0.675+03 |
0.366+03 |
0.60+00 |
0.332-01 |
0.166+02 |
0.134+02 |
0.607+03 |
0.320+03 |
0.80+00 |
0.465-01 |
0.139+02 |
0.109+02 |
0.466+03 |
0.256+03 |
0.10+01 |
0.620-01 |
0.120+02 |
0.913+01 |
0.390+03 |
0.217+03 |
0.15+01 |
0.110+00 |
0.915+01 |
0.669+01 |
0.283+03 |
0.152+03 |
0.20+01 |
0.171+00 |
0.758+01 |
0.544+01 |
0.224+03 |
0.121+03 |
0.30+01 |
0.324+00 |
0.577+01 |
0.405+01 |
0.161+03 |
0.828+02 |
0.40+01 |
0.521+00 |
0.452+01 |
0.308+01 |
0.126+03 |
0.645+02 |
0.50+01 |
0.759+00 |
0.393+01 |
0.268+01 |
0.106+03 |
0.521+02 |
0.60+01 |
0.103+01 |
0.343+01 |
0.232+01 |
0.905+02 |
0.439+02 |
0.80+01 |
0.169+01 |
0.275+01 |
0.183+01 |
0.707+02 |
0.335+02 |
0.10+02 |
0.249+01 |
0.231+01 |
0.152+01 |
0.584+02 |
0.266+02 |
0.15+02 |
0.507+01 |
0.167+01 |
0.108+01 |
0.413+02 |
0.181+02 |
0.20+02 |
0.842+01 |
0.135+01 |
0.865+00 |
0.322+02 |
0.137+02 |
0.30+02 |
0.172+02 |
0.983+00 |
0.619+00 |
0.229+02 |
0.941+01 |
0.40+02 |
0.287+02 |
0.788+00 |
0.490+00 |
0.182+02 |
0.724+01 |
0.50+02 |
0.425+02 |
0.666+00 |
0.410+00 |
0.152+02 |
0.595+01 |
0.60+02 |
0.586+02 |
0.586+00 |
0.359+00 |
0.133+02 |
0.509+01 |
0.80+02 |
0.964+02 |
0.484+00 |
0.295+00 |
0.107+02 |
0.403+01 |
0.10+03 |
0.141+03 |
0.418+00 |
0.253+00 |
0.919+01 |
0.338+01 |
0.15+03 |
0.277+03 |
0.328+00 |
0.196+00 |
0.709+01 |
0.253+01 |
0.20+03 |
0.442+03 |
0.284+00 |
0.169+00 |
0.606+01 |
0.211+01 |
0.30+03 |
0.828+03 |
0.239+00 |
0.140+00 |
0.501+01 |
0.169+01 |
0.40+03 |
0.127+04 |
0,217+00 |
0.126+00 |
0.453+01 |
0.148+01 |
0.50+03 |
0.175+04 |
0.203+00 |
0.116+00 |
0.423+01 |
0.136+01 |
0.60+03 |
0.225+04 |
0.197+00 |
0.112+00 |
0.404+01 |
0.129+01 |
0.80+03 |
0.329+04 |
0.188+00 |
0.106+00 |
0.385+01 |
0.120+01 |
0.10+04 |
0.437+04 |
0.183+00 |
0.102+00 |
0.375+01 |
0.115+01 |
0.15+04 |
0.711+04 |
0.182+00 |
0.101+00 |
0.365+01 |
0.109+01 |
0.20+04 |
0.985+04 |
0.182+00 |
0.994-01 |
0.364+01 |
0.106+01 |
0.30+04 |
0.153+05 |
0.184+00 |
0.989-01 |
0.366+01 |
0.104+01 |
0.40+04 |
0.207+05 |
0.188+00 |
0.101+00 |
0.370+01 |
0.103+01 |
0.50+04 |
0.259+05 |
0.195+00 |
0.106+00 |
0.374+01 |
0.103+01 |
0.60+04 |
0.309+05 |
0.206+00 |
0.116+00 |
0.377+01 |
0.102+01 |
0.80+04 |
0.405+05 |
0.210+00 |
0.117+00 |
0.384+01 |
0.102+01 |
0.10+05 |
0.499+05 |
0.214+00 |
0.119+00 |
0.387+01 |
0.102+01 |
0.15+05 |
0.724+05 |
0.231+00 |
0.133+00 |
- |
- |
0.20+05 |
0.934+05 |
0.245+00 |
0.144+00 |
- |
- |
0.30+05 |
0.132+06 |
0.274+00 |
0.169+00 |
- |
- |
0.40+05 |
0.167+06 |
0.301+00 |
0.194+00 |
- |
- |
0.50+05 |
0.198+06 |
0.329+00 |
0.220+00 |
- |
- |
0.60+05 |
0.228+06 |
0.356+00 |
0.246+00 |
- |
- |
0.80+05 |
0.280+06 |
0.410+00 |
0.297+00 |
- |
- |
0.10+06 |
0.326+06 |
0.464+00 |
0.349+00 |
- |
- |
0.15+06 |
0.420+06 |
0.599+00 |
0.481+00 |
- |
Таблица 5
Значения , , , и для электронов в тканеэквивалентном веществе
, кэВ |
, мкм |
, мкм |
, мкм |
, мкм |
, мкм |
0.10+00 |
0.103+04 |
0.620+03 |
0.163+03 |
0.212+03 |
0.314+02 |
0.15+00 |
0.799+03 |
0.498+03 |
0.109+03 |
0.167+03 |
0.251+02 |
0.20+00 |
0.662+03 |
0.420+03 |
0.815+02 |
0.140+03 |
0.210+02 |
0.30+00 |
0.503+03 |
0.326+03 |
0.544+02 |
0.106+03 |
0.163+02 |
0.40+00 |
0.409+03 |
0.267+03 |
0.408+02 |
0.875+02 |
0.133+02 |
0.50+00 |
0.345+03 |
0.227+03 |
0.326+02 |
0.748+02 |
0.113+02 |
0.60+00 |
0.301+03 |
0.200+03 |
0.272+02 |
0.644+02 |
0.984+01 |
0.80+00 |
0.239+03 |
0.159+03 |
0.204+02 |
0.519+02 |
0.788+01 |
0.10+01 |
0.202+03 |
0.135+03 |
0.164+02 |
0.440+02 |
0.667+01 |
0.15+01 |
0.141+03 |
0.952+02 |
0.109+02 |
0.306+02 |
0.469+01 |
0.20+01 |
0.112+03 |
0.752+02 |
0.821+01 |
0.245+02 |
0.372+01 |
0.30+01 |
0.766+02 |
0.519+02 |
0.551+01 |
0.167+02 |
0.256+01 |
0.40+01 |
0.597+02 |
0.404+02 |
0.413+01 |
0.131+02 |
0.201+01 |
0.50+01 |
0.481+02 |
0.328+02 |
0.331+01 |
0.104+01 |
0.163+01 |
0.60+01 |
0.405+02 |
0.276+02 |
0.277+01 |
0.875+01 |
0.135+01 |
0.80+01 |
0.309+02 |
0.211+02 |
0.208+01 |
0.677+01 |
0.104+01 |
0.10+02 |
0.245+02 |
0.166+02 |
0.168+01 |
0.537+01 |
0.821+00 |
0.15+02 |
0.166+02 |
0.112+02 |
0.114+01 |
0.363+01 |
0.555+00 |
0.20+02 |
0.126+02 |
0.855+01 |
0.865+00 |
0.227+01 |
0.421+00 |
0.30+02 |
0.864+01 |
0.586+01 |
0.590+00 |
0.190+01 |
0.288+00 |
0.40+02 |
0.665+01 |
0.451+01 |
0.456+00 |
0.146+01 |
0.223+00 |
0.50+02 |
0.546+01 |
0.370+01 |
0.375+00 |
0.120+01 |
0.183+00 |
0.60+02 |
0.467+01 |
0.317+01 |
0.321+00 |
0.102+01 |
0.156+00 |
0.80+02 |
0.370+01 |
0.251+01 |
0.253+00 |
0.810+00 |
0.123+00 |
0.10+03 |
0.310+01 |
0.210+01 |
0.212+00 |
0.680+00 |
0.104+00 |
0.15+03 |
0.232+01 |
0.157+01 |
0.159+00 |
0.508+00 |
0.774-01 |
0.20+03 |
0.193+01 |
0.131+01 |
0.132+00 |
0.423+00 |
0.645-01 |
0.30+03 |
0.155+01 |
0.105+01 |
0.106+00 |
0.339+00 |
0.517-01 |
0.40+03 |
0.136+01 |
0.923+00 |
0.931-01 |
0.298+00 |
0.455-01 |
0.50+03 |
0.125+01 |
0.849+00 |
0.854-01 |
0.275+00 |
0.419-01 |
0.60+03 |
0.118+01 |
0.802+00 |
0.810-01 |
0.259+00 |
0.395-01 |
0.80+03 |
0.110+01 |
0.745+00 |
0.749-01 |
0.241+00 |
0.367-01 |
0.10+04 |
0.105+01 |
0.714+00 |
0.722-01 |
0.231+00 |
0.352-01 |
0.15+04 |
0.906+00 |
0.676+00 |
0.683-01 |
0.219+00 |
0.333-01 |
0.20+04 |
0.972+00 |
0.660+00 |
0.667-01 |
0.213+00 |
0.325-01 |
0.30+04 |
0.952+00 |
0.647+00 |
0.650-01 |
0.209+00 |
0.318-01 |
0.40+04 |
0.943+00 |
0.640+00 |
0.645-01 |
0.207+00 |
0.315-01 |
0.50+04 |
0.940+00 |
0.638+00 |
0.645-01 |
0.206+00 |
0.314-01 |
0.60+04 |
0.936+00 |
0.635+00 |
0.639-01 |
0.206+00 |
0.313-01 |
0.80+04 |
0.935+00 |
0.635+00 |
0.639-01 |
0.205+00 |
0.313-01 |
0.10+05 |
0.935+00 |
0.635+00 |
0.639-01 |
0.205+00 |
0.313-01 |
Параметр экранирования ядра атомными электронами рассчитывают по формуле
, (127)
где - кинетическая энергия рассеиваемого электрона, выраженная в единицах энергии покоя электрона;
- атомный номер -гo элемента;
- множитель, характеризующий -й элемент.
Нумерация и значения параметров , для элементов тканеэквивалентного вещества по ГОСТ 18622 представлены в табл.6.
Таблица 6
Нумерация и значения параметров , для элементов тканеэквивалентного вещества
Элемент |
| |||
Номер |
1 |
2 |
3 |
4 |
8 |
1 |
6 |
7 | |
1,29 |
1,13 |
1,23 |
1,26 |
ПРИЛОЖЕНИЕ 5
Справочное
АЛГОРИТМ МОДЕЛИРОВАНИЯ ПОТЕРЬ ЭНЕРГИИ ЭЛЕКТРОНОВ
В НЕУПРУГИХ ВЗАИМОДЕЙСТВИЯХ
Потери энергии электронов в неупругих взаимодействиях с атомными электронами в тканеэквивалентном веществе, превышающие заданный порог , моделируют в приближении свободных электронов методом композиции. В качестве исходных данных выбирают энергию электрона и , выраженные в единицах массы покоя электрона (511 кэВ). Алгоритм моделирования потери энергии , кэВ, в неупругом взаимодействии установлен в пп.1-8.
1. Вычисляют параметры неупругого взаимодействия при энергии электрона по формулам:
; (128)
; (129)
; (130)
; (131)
; (132)
; (133)
. (134)
2. Для очередного случайного числа , равномерно распределенного в интервале (0,1) (далее - очередного ), проверяют соблюдение условия
. (135)
Если оно выполнено, то переходят в п.3, в противном случае - в п.5.
3. Вычисляют потерю энергии (в единицах ), соответствующую очередному , по формуле
. (136)
4. Для очередного проверяют соблюдение условия
. (137)
Если оно выполнено, то возвращаются в п.3, в противном случае переходят в п.8.
5. Для очередного проверяют соблюдение условия
. (138)
Если оно выполнено, то переходят в п.6, в противном случае вычисляют , соответствующую очередному , по формуле
(139)
и переходят в п.8.
6. Вычисляют , соответствующую очередному , по формуле
. (140)
7. Для очередного проверяют соблюдение условия
. (141)
Если оно выполнено, то возвращаются в п.6, в противном случае переходят к следующему пункту.
8. Расчет заканчивают, определяя , кэВ, по формуле
. (142)
Электронный текст документа