- USD ЦБ 03.12 30.8099 -0.0387
- EUR ЦБ 03.12 41.4824 -0.0244
Краснодар:
|
погода |
ГОСТ Р ИСО/МЭК 7811-6-2003
Группа Э46
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
Карты идентификационные
СПОСОБ ЗАПИСИ
Часть 6
Магнитная полоса большой коэрцитивной силы
Identification cards. Recording technique.
Part 6. Magnetic stripe of high coercivity
ОКС 35.240.15
ОКП 40 8470
Дата введения 2004-07-01
Предисловие
1 РАЗРАБОТАН Техническим комитетом по стандартизации ТК 22 "Информационные технологии", Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении" (ВНИИНМАШ), ОАО "Московский комитет по науке и технологиям"
ВНЕСЕН ТК 22 "Информационные технологии"
2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 14 октября 2003 г. N 289-ст
3 Настоящий стандарт представляет собой аутентичный текст международного стандарта ИСО/МЭК 7811-6:2001 "Карты идентификационные. Способ записи. Часть 6. Магнитная полоса. Большая коэрцитивная сила"
4 ВВЕДЕН ВПЕРВЫЕ
1 Область применения
Настоящий стандарт - один из серии стандартов, описывающих параметры и применение идентификационных карт (далее - карт) в рамках обмена информацией.
Стандарт устанавливает требования к магнитной полосе (включая защитное покрытие) большой коэрцитивной силы, расположенной на карте, метод кодирования и кодированные наборы символов.
Стандарт учитывает как человеческий, так и машинный аспекты применения карт и устанавливает минимальные требования.
Коэрцитивная сила влияет на многие параметры, установленные в настоящем стандарте, но стандарт ее точно не определяет. Основной особенностью магнитной полосы большой коэрцитивной силы является повышенная стойкость к стиранию. Это ее свойство сочетается с минимальной вероятностью повреждения других магнитных полос при контакте, если обеспечивается совместимость по считыванию с магнитными полосами по ГОСТ Р ИСО/МЭК 7811-2.
Назначение упомянутой серии стандартов - обеспечить критерии, в соответствии с которыми карты должны выполняться. В этих стандартах не рассматривается степень использования карты до испытаний, если оно имело место. В отношении несоответствия карт установленным критериям решения принимают договаривающиеся стороны на основе консенсуса.
Методы испытаний, применяемые для контроля соответствия карт требованиям настоящего стандарта, установлены в ГОСТ Р ИСО/МЭК 10373-2.
2 Соответствие
Предварительное условие для удовлетворения карты настоящему стандарту - соответствие ее требованиям ГОСТ Р ИСО/МЭК 7810.
Карта соответствует настоящему стандарту, если она удовлетворяет всем его требованиям.
3 Нормативные ссылки
В настоящем стандарте использованы ссылки на следующие стандарты.
ГОСТ Р ИСО/МЭК 7810-2002 Карты идентификационные. Физические характеристики
ГОСТ Р ИСО/МЭК 7811-2-2002 Карты идентификационные. Способ записи. Часть 2. Магнитная полоса малой коэрцитивной силы
ГОСТ Р ИСО/МЭК 10373-1-2002 Карты идентификационные. Методы испытаний. Часть 1. Общие характеристики
ГОСТ Р ИСО/МЭК 10373-2-2002 Карты идентификационные. Методы испытаний. Часть 2. Карты с магнитной полосой
ИСО 31-5-92* Величины и единицы измерения. Часть 5. Электричество и магнетизм
ИСО 4287-97* Геометрические требования к изделию. Структура поверхности. Профильный метод. Термины, определения и параметры структуры поверхности
ИСО/МЭК 10373-2-98* Карты идентификационные. Методы испытаний. Часть 2. Карты с магнитной полосой
МЭК 50(221)-90* Международный электротехнический словарь. Глава 221. Магнитные материалы и компоненты
________________
* Международные стандарты ИСО/МЭК - во ВНИИКИ Госстандарта России.
4 Определения
В настоящем стандарте применяют термины и определения по ГОСТ Р ИСО/МЭК 7810, а также следующие.
4.1 первичный эталон: Набор эталонных карт, созданных и хранимых в Федеральном физико-техническом институте Германии, которые представляют собой значения эталонной амплитуды сигнала и эталонного тока (обозначение RM7811-6).
4.2 вторичный эталон: Эталонная карта, которая имеет связь с первичным эталоном, установленную в сертификате, предоставляемом с каждой картой (обозначение RM7811-6).
Примечание - Вторичные эталоны можно заказать в Федеральном физико-техническом институте Германии по адресу: Physikalisch-Technische Bundesanstalt, Flab. 2.24 - Bundesallee 100, D-38116 Braunschweig, Germany (по крайней мере до 2005 г.).
4.3 неиспользованная некодированная карта: Карта, обладающая всеми компонентами, обусловленными ее предполагаемым назначением, которую не подвергали какой-либо персонализации или испытанию и хранили в стерильных условиях при температуре от 5 °С до 30 °С и относительной влажности от 10% до 90%, не подвергая воздействиям дневного света продолжительностью более 48 ч и теплового удара.
4.4 неиспользованная кодированная карта: Карта в соответствии с 4.3, которую подвергли лишь кодированию всеми данными, необходимыми для ее использования по назначению (например, магнитному кодированию, тиснению, электронному кодированию).
4.5 возвращенная карта: Карта в соответствии с 4.4 после того, как она была выдана ее держателю и возвращена для проверки.
4.6 переход потока: Участок с наибольшей интенсивностью изменения (с расстоянием) намагниченности.
4.7 эталонный ток (): Минимальная записанная амплитуда тока при заданных условиях испытаний, которая обусловливает на эталонной карте амплитуду сигнала эхосчитывания (считывания сразу после записи), равную 80% эталонной амплитуды сигнала при плотности записи 8 п.п./мм, как показано на рисунке 6.
4.8 эталонный уровень потока (): Уровень потока в испытательной головке, соответствующий эталонному току .
4.9 токи записи при испытаниях (, ): Токи записи, определяемые следующим образом:
- ток записи, соответствующий потоку 2,8;
- ток записи, соответствующий потоку 3,5.
4.10 единичная амплитуда сигнала (): Базопиковая амплитуда одиночного сигнала напряжения эхосчитывания.
4.11 средняя амплитуда сигнала (): Сумма абсолютных значений амплитуды всех пиков сигналов (), деленная на число пиков сигналов () на данной дорожке по всей длине магнитной полосы.
4.12 эталонная амплитуда сигнала (): Максимальное значение средней амплитуды сигнала эталонной карты, приведенное к первичному эталону.
4.13 физическая плотность записи: Число переходов потока, записанных на дорожке, приходящееся на единицу длины (п.п./мм).
4.14 информационная плотность записи: Число битов данных хранимых на единице длины (бит/мм).
4.15 двоичная ячейка: Промежуток между двумя синхронизирующими переходами потока. См. рисунок 10.
4.16 подинтервал: Половина (номинально) промежутка между двумя синхронизирующими переходами потока. См. рисунок 10.
4.17 ток размагничивания (): Значение постоянного тока, уменьшающего среднюю амплитуду сигнала до 80% эталонной амплитуды сигнала () на вторичной эталонной карте, которая была закодирована при плотности записи 20 п.п./мм и токе .
5 Физические характеристики карты
Карта должна соответствовать требованиям ГОСТ Р ИСО/МЭК 7810.
Примечание - Эмитенты карт должны обратить внимание, что информация, содержащаяся на магнитной полосе, может оказаться неэффективной в результате загрязнения, а также контакта с некоторыми обычно применяемыми химическими веществами, включая пластификаторы. Следует также отметить, что ни печать, ни экранирующее покрытие, располагаемые поверх магнитной полосы, не должны нарушать ее функционирование.
5.1 Коробление в зоне магнитной полосы
При размещении карты на плоской жесткой пластине магнитной полосой вниз и под воздействием усилия 2,2 Н, равномерно распределенного напротив магнитной полосы с лицевой стороны карты, полоса не должна отходить от поверхности пластины более чем на 0,08 мм.
5.2 Искажения поверхности
Как на лицевой, так и на оборотной сторонах карты в зоне, показанной на рисунке 1, не должно быть каких-либо искажений поверхности, неровностей или выступающих участков, нарушающих контакт между магнитной головкой и магнитной полосой.
Рисунок 1 - Зона на карте с магнитной полосой, где не допускаются искажения поверхности
В случае, если на лицевой или оборотной стороне карты имеется выступающий участок с панелью для подписи, то он должен располагаться на расстоянии не менее 19,05 мм от верхней кромки карты.
Примечание - Выступающие участки или искажения поверхности в других местах карты могут препятствовать перемещению карты в устройствах, обрабатывающих данные на магнитной полосе, что может привести к ошибкам при считывании или записи.
6 Физические характеристики магнитной полосы
6.1 Высота и профиль поверхности зоны магнитной полосы
Магнитную полосу располагают на оборотной стороне карты, как показано на рисунке 2.
- минимальная ширина магнитной полосы; - минимальное расстояние от нижнего края полосы до верхней базовой кромки карты. равно 11,89 мм при использовании дорожек 1, 2 и 15,95 мм - при использовании дорожек 1-3.
Примечание - В случае использования зоны магнитной полосы для дорожек 1 и 2 размер магнитного материала может оказаться меньше максимального размера b, приведенного на рисунке 11, показывающем расположение на карте дорожки 2. Желательно, чтобы зона магнитной полосы распространялась за пределы кодовой дорожки.
Рисунок 2 - Расположение магнитного материала на карте формата ID-1
6.1.1 Профиль поверхности зоны магнитной полосы
Максимальное вертикальное отклонение () поперечного профиля поверхности зоны магнитной полосы указано ниже. См. рисунки 3-5. Тангенс угла наклона кривой профиля поверхности должен находиться в следующих пределах:
тангенс угла наклона .
Если жесткость карты при изгибе такова, что прогиб (см. ГОСТ Р ИСО/МЭК 7810) составляет 20 мм или более, то профиль поверхности должен лежать в следующих границах:
, мм |
, мкм | |
Рисунок 3а |
Рисунок 3б | |
6,35 |
До 9,5 включ. |
До 5,8 включ. |
10,28 |
До 15,4 включ. |
До 9,3 включ. |
Если жесткость карты при изгибе такова, что прогиб (см. ГОСТ Р ИСО/МЭК 7810) меньше 20 мм, то профиль поверхности должен лежать в следующих границах:
, мм |
, мкм | |
Рисунок 3а |
Рисунок 3б | |
6,35 |
До 7,3 включ. |
До 4,5 включ. |
10,28 |
До 11,7 включ. |
До 7,3 включ. |
- минимальная ширина магнитной полосы
Рисунок 3 - Профиль поверхности
Рисунок 4 - Примеры профилей поверхности
Примечание - Из-за неровных профилей качество кодирования может оказаться низким.
Рисунок 5 - Примеры неровных профилей поверхности
6.1.2 Высота зоны магнитной полосы
Вертикальное отклонение () зоны магнитной полосы относительно прилегающей поверхности карты должно быть следующим:
-0,005 мм 0,038 мм.
Выступ профиля, обусловленный выдавливанием материала при горячей штамповке, не является частью магнитной полосы. Он не должен превышать высоту зоны магнитной полосы.
6.2 Шероховатость поверхности
Среднее значение параметра шероховатости поверхности зоны магнитной полосы не должно превышать 0,40 мкм как в продольном, так и в поперечном направлениях. См. ИСО 4287.
6.3 Сцепление магнитной полосы с картой
Магнитная полоса не должна отделяться от карты при нормальном применении.
6.4 Износ магнитной полосы от головки считывания/записи
Среднюю () и единичную () амплитуды сигнала измеряют до и после воздействия 2000 циклов износа. Должны выполняться следующие условия:
и .
6.5 Химическая стойкость
Среднюю () и единичную () амплитуды сигнала измеряют до и после кратковременного химического воздействия в соответствии с 5.4 ГОСТ Р ИСО/МЭК 10373-1. Должны выполняться следующие условия:
и .
Среднюю () и единичную () амплитуды сигнала измеряют до и после продолжительного (в течение 24 ч) воздействия кислотного и щелочного растворов, имитирующих пот, в соответствии с 5.4 ГОСТ Р ИСО/МЭК 10373-1. Должны выполняться следующие условия:
и .
7 Рабочие характеристики магнитного материала
Назначение данного раздела - описать способность карт к магнитному взаимодействию с системами обработки. Коэрцитивную силу магнитного материала стандарт не нормирует. Требования к рабочим характеристикам магнитных материалов установлены в 7.3 независимо от коэрцитивной силы.
7.1 Общие положения
Метод определения характеристик, рассматриваемых в данном разделе, основан на использовании эталонной карты, магнитный материал которой имеет прослеживаемую связь с первичным эталоном (см. 4.2). Результаты измерения амплитуды сигнала, полученные от применения вторичной эталонной карты, должны быть скорректированы с учетом поправочного множителя вторичного эталона.
7.2 Климатические условия испытаний и эксплуатации
Климатические условия, при которых проводят измерения амплитуды сигнала, следующие:
- температура окружающего воздуха (23±3) °С;
- относительная влажность от 40% до 60%.
Значения средней амплитуды сигнала при плотности записи 8 п.п./мм, измеренные до и после воздействия в течение 5 мин температуры от минус 35 °С до плюс 50 °С и относительной влажности от 5% до 95%, соответствующих условиям эксплуатации, не должны отличаться более чем на 15%.
7.3 Требования к амплитуде сигнала магнитного материала
Характеристики записи неиспользованных некодированных карт представлены в таблице 1 и на рисунках 6, 7. Наклон кривой насыщения никогда не должен быть положительным между и .
Таблица 1 - Амплитуда сигнала неиспользованных некодированных карт
Характеристика |
Плотность, записи, п.п./мм |
Ток записи при испытаниях |
Обозначение амплитуды сигнала |
Значение |
Амплитуда сигнала |
8 |
|
|
0,8< 1,2 |
|
1,26 | |||
8 |
|
0,8 | ||
20 |
|
0,65 | ||
Разрешающая способность |
20 |
|
0,7 | |
Стираемость |
0 |
, постоянный |
|
0,03 |
Добавочный импульс |
|
0,05 | ||
Размагничивание |
, постоянный |
|
0,64 | |
|
0,54 | |||
Форма сигнала |
3 |
, |
0,05 | |
- абсолютное значение наибольшей амплитуды сигнала в области измерений , как показано на рисунке 7. |
1 - кривая насыщения карты-образца; 2 - скорректированная кривая насыщения эталонной карты
(приведена к первичному эталону)
Примечание - Кривая 2 определяет характеристику первичного эталона. Параметры окна определяют карту, которая будет функциональна в машиночитаемой среде.
Рисунок 6 - Пример кривых насыщения, показывающий допускаемую область
при плотности записи 8 п.п./мм
1 Находят середину между двумя соседними пиками.
2 Находят точку перехода формы сигнала через нуль между средней точкой и соседним пиком.
3 Область измерений - это удвоенный интервал между средней точкой и точкой перехода через нуль.
4 Находят наибольший уровень амплитуды сигнала в области измерений, определенной на рисунке.
5 Абсолютное значение этого уровня и есть для формы сигнала.
Рисунок 7 - Измерения формы сигнала
Требования к характеристикам магнитной среды, установленные в настоящем пункте, должны быть выполнены для достижения повышенной стойкости к стиранию и обеспечения магнитного взаимодействия между картой и системами обработки. Свойства, приведенные в приложении Г, являются ориентировочными для магнитного материала. Приложение Г является справочным и не должно применяться для оценки работоспособности карт.
8 Метод кодирования
Метод кодирования, применяемый для каждой дорожки, известен как двухчастотная запись. Данный метод позволяет осуществлять последовательную запись самосинхронизирующихся данных.
Кодирование включает в себя одновременную запись как данных, так и переходов синхронизации. Переход потока, возникающий между синхронизирующими импульсами, означает, что данный бит - "единица"; отсутствие перехода потока между переходами синхронизации означает, что данный бит - "ноль" (см. рисунок 8).
- интервал самосинхронизации (хронирования)
Рисунок 8 - Пример двухчастотного синфазного кодирования
Данные должны быть записаны в виде синхронной последовательности символов без пропусков, возникших из-за отсутствия сигнала.
Примечание - Запись, выполняемая с использованием тока записи менее , может привести к тому, что качество кодирования окажется низким.
9 Общие требования к кодированию
9.1 Угол записи
Угол записи, отсчитываемый от самой близкой к магнитной полосе и параллельной ей кромки карты (), должен быть 90°±20'.
Угол записи определяют путем измерения угла зазора магнитной головки при максимальной амплитуде считывания (см. рисунок 9).
Рисунок 9 - Угол записи
9.2 Номинальная информационная плотность записи
Номинальная информационная плотность записи должна быть следующей, бит/мм:
8,27 - на дорожках 1 и 3;
2,95 - на дорожке 2.
9.3 Требования к амплитуде сигнала для дорожек 1-3
Амплитуда сигнала на дорожках 1-3 должна удовлетворять следующим условиям:
- для неиспользованных кодированных карт
0,641,36;
- для возвращенных карт
0,521,36.
Примечание - Границы амплитуды сигнала обмена для каждой кодовой дорожки установлены при заданных информационных плотностях записи. Требования к амплитуде сигнала, приведенные в таблице 1, отражают ограничения для магнитного материала при заданных частоте записи и испытательных токах записи.
9.4 Битовая конфигурация
В пределах битовой конфигурации каждого символа в магнитной зоне первым должен быть закодирован наименьший значащий бит (2), последним - контрольный бит четности (Р).
9.5 Направление записи
Кодирование следует начинать от правого края карты, если смотреть на нее со стороны с магнитной полосой, расположенной в верхней части карты.
9.6 Начальные и конечные нули
Во вводную зону, предваряющую первый бит данных, и в выводную зону, следующую за последним битом, следует записывать нули. Нули не требуются для выполнения данного требования на участках, расположенных в пределах 3,30 мм и далее 82,17 мм от правой кромки карты, если смотреть на нее с ее оборотной стороны.
10 Требования к кодированию
10.1 Буквенно-цифровая дорожка 1
10.1.1 Средняя информационная плотность записи
Средняя информационная плотность записи (), измеренная в продольном направлении, параллельном верхней базовой кромке карты, должна составлять 8,27 бит/мм ±8%.
10.1.2 Промежутки между переходами потока
Промежутки между переходами потока изменяются согласно требованиям таблиц 2 и 3 для неиспользованных кодированных и возвращенных карт соответственно. См. также рисунок 10.
Таблица 2 - Изменение промежутка между переходами потока неиспользованных кодированных карт. Дорожки 1 и 3
Характеристика |
Значение |
Допускаемое изменение, %, |
Средняя длина промежутка между синхронизирующими переходами потока |
111 мкм131 мкм |
±8 |
Единичная длина промежутка между синхронизирующими переходами потока |
109 мкм133 мкм |
±10 |
Смежное побитовое изменение |
0,901,10 |
±10 |
Длина подинтервала |
53 мкм68 мкм |
±12 |
Смежная длина подинтервала |
0,88/21,12/2 |
±12 |
или - длина промежутка между переходами потока, следующего за промежутком длиной и смежного с ним. |
Таблица 3 - Изменение промежутка между переходами потока возвращенных карт. Дорожки 1 и 3
Характеристика |
Значение |
Допускаемое изменение, %, |
Средняя длина промежутка между синхронизирующими переходами потока |
111 мкм131 мкм |
±8 |
Единичная длина промежутка между синхронизирующими переходами потока |
103 мкм139 мкм |
±15 |
Смежное побитовое изменение |
0,851,15 |
±15 |
Длина подинтервала |
48,4 мкм72,6 мкм |
±20 |
Смежная длина подинтервала |
0,70/21,30/2 |
±30 |
или - длина промежутка между переходами потока, следующего за промежутком длиной и смежного с ним. |
Рисунок 10 - Изменение промежутка между переходами потока
10.1.3 Кодированный набор символов
Кодированный набор символов для дорожки 1 должен быть семибитным буквенно-цифровым, как показано в таблице 4.
Таблица 4 - Семибитный буквенно-цифровой кодированный набор символов
Символ |
Двоичный код | ||||||
Р |
2 |
2 |
2 |
2 |
2 |
2 | |
пробел |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
! |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
" |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
# |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
$ |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
% |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
& |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
' |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
( |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
) |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
* |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
+ |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
, |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
- |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
. |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
/ |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
2 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
3 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
4 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
5 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
6 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
7 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
8 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
9 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
: |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
; |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
< |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
= |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
> |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
? |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
@ |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
А |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
B |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
C |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
D |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
Е |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
F |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
G |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
H |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
I |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
J |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
K |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
L |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
M |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
N |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
О |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
Р |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
Q |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
R |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
S |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
Т |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
U |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
V |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
W |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
Х |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
Y |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
Z |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
[ |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
/ |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
] |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
^ |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
- |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
Примечание - Указанный кодированный набор символов идентичен приведенному в ГОСТ Р ИСО/МЭК 7811-2 (разработан на основе Американского стандартного кода для обмена информацией ASCII). |
14 символов ! " & ' * + , : ; < = > @ _ подлежат применению только для целей управления аппаратными средствами и не могут быть использованы для передачи информации (содержания данных).
Три символа [ \ ] зарезервированы для дополнительных национальных символов, если они потребуются. Их не следует применять в рамках международного информационного обмена.
Символ # зарезервирован для произвольных дополнительных графических символов.
Три символа % ^ ? должны иметь следующие значения:
% - сигнальная метка начала;
^ - разделитель полей;
? - сигнальная метка конца.
10.1.4 Максимальное число символов для карты формата ID-1
Символы данных, управляющие символы, сигнальные метки начала и конца и символ продольного контроля по избыточности в сумме не должны превышать 79 символов.
10.2 Цифровая дорожка 2
10.2.1 Средняя информационная плотность записи
Средняя информационная плотность записи (), измеренная в продольном направлении, параллельном верхней базовой кромке карты, должна составлять 2,95 бит/мм ±5%.
10.2.2 Промежутки между переходами потока
Промежутки между переходами потока изменяются согласно требованиям таблиц 5 и 6 для неиспользованных кодированных и возвращенных карт соответственно. См. также рисунок 10.
Таблица 5 - Изменение промежутка между переходами потока неиспользованных кодированных карт. Дорожка 2
Характеристика |
Значение |
Допускаемое изменение, %, не более |
Средняя длина промежутка между синхронизирующими переходами потока |
322 мкм 356 мкм |
±5 |
Единичная длина промежутка между синхронизирующими переходами потока |
315 мкм363 мкм |
±7 |
Смежное побитовое изменение |
0,901,10 |
±10 |
Длина подинтервала |
153 мкм186 мкм |
±10 |
Смежная длина подинтервала |
0,88/21,12/2 |
±12 |
или - длина промежутка между переходами потока, следующего за промежутком длиной и смежного с ним. |
Таблица 6 - Изменение промежутка между переходами потока возвращенных карт. Дорожка 2
Характеристика |
Значение |
Допускаемое изменение, %, не более |
Средняя длина промежутка между синхронизирующими переходами потока |
322 мкм356 мкм |
±5 |
Единичная длина промежутка между синхронизирующими переходами потока |
288 мкм390 мкм |
±15 |
Смежное побитовое изменение |
0,851,15 |
±15 |
Длина подинтервала |
136 мкм203 мкм |
±20 |
Смежная длина подинтервала |
0,70/21,30/2 |
±30 |
или - длина промежутка между переходами потока, следующего за промежутком длиной и смежного с ним. |
10.2.3 Кодированный набор символов
Кодированный набор символов для дорожки 2 должен быть пятибитным цифровым, как показано в таблице 7.
Таблица 7 - Пятибитный цифровой кодированный набор символов
Символ |
Двоичный код | ||||
Р |
2 |
2 |
2 |
2 | |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
2 |
0 |
0 |
0 |
1 |
0 |
3 |
1 |
0 |
0 |
1 |
1 |
4 |
0 |
0 |
1 |
0 |
0 |
5 |
1 |
0 |
1 |
0 |
1 |
6 |
1 |
0 |
1 |
1 |
0 |
7 |
0 |
0 |
1 |
1 |
1 |
8 |
0 |
1 |
0 |
0 |
0 |
9 |
1 |
1 |
0 |
0 |
1 |
: |
1 |
1 |
0 |
1 |
0 |
; |
0 |
1 |
0 |
1 |
1 |
< |
1 |
1 |
1 |
0 |
0 |
= |
0 |
1 |
1 |
0 |
1 |
> |
0 |
1 |
1 |
1 |
0 |
? |
1 |
1 |
1 |
1 |
1 |
Примечание - Указанный кодированный набор символов идентичен приведенному в ГОСТ Р ИСО/МЭК 7811-2 (разработан на основе Американского стандартного кода для обмена информацией ASCII). |
Три символа : < > подлежат применению только для целей управления аппаратными средствами и не могут быть использованы для передачи информации (содержания данных).
Три символа ; = ? должны иметь следующие значения:
; - сигнальная метка начала;
= - разделитель полей;
? - сигнальная метка конца.
10.2.4 Максимальное число символов для карты формата ID-1
Символы данных, управляющие символы, сигнальные метки начала и конца и символ продольного контроля по избыточности в сумме не должны превышать 40 символов.
10.3 Цифровая дорожка 3
10.3.1 Средняя информационная плотность записи
Средняя информационная плотность записи (), измеренная в продольном направлении, параллельном верхней базовой кромке карты, должна составлять 8,27 бит/мм ±8%.
10.3.2 Промежутки между переходами потока
Промежутки между переходами потока изменяются согласно требованиям таблиц 2 и 3 для неиспользованных кодированных и возвращенных карт соответственно. См. также рисунок 10.
10.3.3 Кодированный набор символов
Кодированный набор символов для дорожки 3 должен быть пятибитным цифровым, как показано в таблице 7.
Три символа : < > подлежат применению только для целей управления аппаратными средствами и не могут быть использованы для передачи информации (содержания данных).
Три символа ; = ? должны иметь следующие значения:
; - сигнальная метка начала;
= - разделитель полей;
? - сигнальная метка конца.
10.3.4 Максимальное число символов для карты формата ID-1
Символы данных, управляющие символы, сигнальные метки начала и конца и символ продольного контроля по избыточности в сумме не должны превышать 107 символов.
11 Обнаружение ошибок
На дорожках должны быть закодированы два метода обнаружения ошибок, как описано ниже. В обоих методах начальные и конечные нули не должны расцениваться как символы данных.
11.1 Контроль по четности
Для каждого кодированного символа должен применяться контрольный бит четности. Значение этого бита определяется исходя из того, что суммарное количество битов в символе, записанных как "единица", с учетом контрольного бита четности должно быть нечетным.
11.2 Продольный контроль по избыточности
Символ продольного контроля по избыточности (далее - LRC) должен быть предусмотрен для каждой дорожки данных.
Символ LRC должен быть закодирован таким образом, чтобы он следовал сразу за сигнальной меткой конца при чтении карты в направлении следующей очередности: сперва - сигнальная метка начала, затем данные и сигнальная метка конца.
Битовая конфигурация символа LRC должна быть такой же, как битовая конфигурация символов данных.
Символ должен вычисляться по следующей методике: значение каждого бита в символе LRC, кроме контрольного бита четности, определяется исходя из того, что суммарное количество битов со значением "единица", закодированных во всех символах дорожки данных (включая сигнальную метку начала, данные, сигнальную метку конца) и символе LRC, должно быть четным.
Контрольный бит четности символа LRC не является контрольным битом для отдельных битов четности дорожки данных, а представляет собой только контрольный бит четности для символа LRC и кодируется, как описано в 11.1.
12 Расположение кодовых дорожек
Каждая кодовая дорожка должна располагаться между двумя линиями, как показано на рисунке 11. Начинают кодирование на средней линии первого бита со значением "единица" в сигнальной метке начала. Заканчивают кодирование на средней линии последнего бита в символе продольного контроля по избыточности (последним битом является контрольный бит четности).
В миллиметрах
Размер |
Дорожка 1 |
Дорожка 2 |
Дорожка 3 |
а |
Не более 5,79 |
Не менее 8,33 |
Не менее 11,63 |
b |
Не менее 8,33 |
Не менее 11,63 |
Не менее 15,19 |
с |
7,44±1,00 |
7,44±0,50 |
7,44±1,00 |
d |
Не менее 6,93 |
Не менее 6,93 |
- |
Примечание - Все дорожки имеют минимальную ширину 2,54 мм. |
Рисунок 11 - Расположение кодовых дорожек
ПРИЛОЖЕНИЕ А
(справочное)
Совместимость магнитных полос по считыванию
Цель данного приложения - пояснить пользователям стандарта границы термины "совместимость по считыванию" (см. раздел 1) применительно к настоящему стандарту и ГОСТ Р ИСО/МЭК 7811-2.
Желательно, чтобы магнитные полосы большой коэрцитивной силы имели бы не только повышенную стойкость к стиранию, но и были бы идентичны в отношении характеристик сигнала эхосчитывания магнитным полосам малой коэрцитивной силы (т.е. магнитным полосам, соответствующим ГОСТ Р ИСО/МЭК 7811-2). Однако на практике различие в магнитных свойствах магнитных полос большой и малой коэрцитивной силы приводит к тому, что характеристики сигнала эхосчитывания различаются у них в достаточной степени, чтобы можно было оценить относительную амплитуду сигнала эхосчитывания, зависящую от измерительной аппаратуры.
В общем случае следует ожидать, что подсистемы эхосчитывания с большей чувствительностью к сигналам с более короткой длиной волны будут приводить к увеличению амплитуд сигнала эхосчитывания при большой коэрцитивной силе по сравнению с амплитудами сигнала эхосчитывания при малой коэрцитивной силе.
Таким образом, пользователи настоящего стандарта должны обратить особое внимание, что получение сопоставимых результатов по амплитуде сигнала эхосчитывания от магнитных полос, соответствующих ГОСТ Р ИСО/МЭК 7811-2, зависит от точного воспроизведения условий измерений, указанных в ГОСТ Р ИСО/МЭК 10373-2.
ПРИЛОЖЕНИЕ Б
(обязательное)
Измерения амплитуды сигнала
В таблице Б.1 показаны уточненные значения характеристик, которые должны быть у полосового фильтра, применяемого для измерений амплитуды сигнала, выполняемых по ИСО/МЭК 10373-2.
Таблица Б.1 - Уточненные значения характеристик полосового фильтра
Позиция на рисунке Б.1 |
Значение | |
цикл/мм |
п.п./мм | |
1 |
0,009 |
0,018 |
2 |
0,025 |
0,050 |
3 |
10,500 |
21,000 |
4 |
30,000 |
60,000 |
Рисунок Б.1 - Характеристики полосового фильтра
ПРИЛОЖЕНИЕ В
(справочное)
Абразивные свойства магнитных полос
Цель данного приложения - объяснить, почему в числе физических характеристик, регламентируемых настоящим стандартом, не указаны абразивные свойства магнитных полос, от которых зависит долговечность магнитной головки. Отсутствие каких-либо требований к абразивным свойствам связано с трудностью определения параметров абразивного износа и разработки надежного и воспроизводимого испытания для измерения абразивных свойств. Несмотря на то, что воспроизводимые методы испытаний недоступны, известны технологии, позволяющие увеличить срок службы магнитной головки (например, применение для магнитных головок улучшенных материалов, введение специальных добавок в состав материала магнитной полосы, нанесение покрытий на магнитную полосу).
Казалось бы, определенные количественно абразивные свойства магнитных полос - необходимое условие для любой попытки предсказать долговечность магнитной головки. Однако точно так же, как существуют значительные различия в природе абразивных свойств разных магнитных полос, существует и множество сред, создаваемых устройствами считывания/записи, в которых функционирует магнитная полоса. Разнообразие комбинаций различных влияющих факторов и сложности способа, которым эти факторы оказывают воздействие на абразивные свойства магнитной полосы, чрезвычайно затрудняет прогнозирование долговечности магнитной головки, даже если точно определены условия окружающей среды, механические условия и свойства магнитной полосы.
Общераспространенные испытания абразивных свойств, требующие применения специального оборудования, выполняются исключительно на сравнительной основе. Такие испытания занимают много времени и, как правило, дороги в пересчете на число используемых карт. Результатами таких испытаний являются попросту ранжирования, которые показывают, что одна магнитная полоса имеет абразивные свойства, выраженные в большей или меньшей степени, чем другие магнитные полосы при заданных условиях испытания. Никаких точных абсолютных оценок испытания не дают, и ранжирования могут меняться при переходе от одних условий к другим.
Выполнение успешной операции считывания или записи на магнитной полосе требует, чтобы полоса и магнитная головка находились в контакте на протяжении всей операции. Перемещения магнитной головки и магнитной полосы относительно друг друга приводят к их износу. Первоначальные абразивные свойства магнитной полосы быстро понижаются в зависимости от числа проходов магнитной головки, поэтому у новой неиспользованной магнитной полосы они могут быть выше, чем у подвергнутой однократной записи, но как только число проходов головки возрастает, интенсивность изменения абразивных свойств уменьшается.
К факторам, влияющим на абразивные свойства магнитной полосы, как известно, относятся температура, влажность, материал головки (и состояние его износа и обработки), давление головки, скорость протяжки карты, специфические физические свойства поверхности магнитной полосы, проявляющиеся при контакте с головкой, шероховатость поверхности, а также загрязнение магнитной полосы. Во внелабораторных условиях в место контакта головки и магнитной полосы попадают пыль, жир и грязь из окружающей среды, зачастую вызывая главные расхождения между результатами измерения абразивного износа, полученными в лабораторных и реальных условиях.
Таким образом, существуют не только трудности достижения приемлемого уровня погрешности измерений абразивных свойств, но и значительные сомнения относительно применимости результатов испытаний абразивных свойств в лабораторных условиях для прогнозирования показателей работы в реальных условиях, что затрудняет разработку соответствующих требований и методов испытаний.
ПРИЛОЖЕНИЕ Г
(справочное)
Статические магнитные характеристики
Г.1 Введение
В данном приложении приведены определения и значения некоторых статических магнитных характеристик магнитных полос большой коэрцитивной силы. Эти параметры полезны при изготовлении магнитного материала и не связаны непосредственно с рабочими магнитными характеристиками, приведенными в таблице 1 для карт. Нет никаких гарантий, что магнитные полосы с характеристиками, содержащимися в настоящем приложении, будут соответствовать обязательным требованиям таблицы 1. Однако магнитные полосы, которые не соответствуют рекомендуемым значениям статических магнитных характеристик, вероятно, не будут удовлетворять и требованиям таблицы 1.
Г.2 Определения
Г.2.1 максимальное поле (): Максимальное абсолютное значение напряженности внешнего магнитного поля, прилагаемого согласно методу испытания.
Г.2.2 статическая петля гистерезиса (): Нормальная петля магнитного гистерезиса, получаемая при циклическом изменении напряженности магнитного поля между крайними значениями - и + с такой малой скоростью, что она не оказывает влияния на петлю (см. МЭК 50, глава 221).
Г.2.3 коэрцитивная сила (=): Величина, количественно определяемая как напряженность непрерывно прилагаемого магнитного поля, которое уменьшает намагниченность до нуля от первоначальной максимальной намагниченности, действуя в противоположном к ней направлении. Интерес представляет величина, измеряемая в направлении, параллельном продольной оси магнитной полосы (см. МЭК 50, глава 221).
Г.2.4 остаточная намагниченность (): Значение намагниченности () в данном направлении при нулевом магнитном поле (=0) после приложения и удаления максимального поля () того же направления.
Г.2.5 релаксационная коэрцитивная сила (): Величина, количественно определяемая как напряженность внешнего магнитного поля, которое при удалении возвращает материал в размагниченное состояние из первоначального состояния максимальной намагниченности, действуя в противоположном к ней направлении. Интерес представляет величина, измеряемая в направлении, параллельном продольной оси магнитной полосы.
Г.2.6 эрстед, Э: Единица напряженности магнитного поля в системе СГС, широко используемая в промышленности средств магнитной записи, равная приблизительно 79,578 А/м (соотношение справочное, см. приложение А к ИСО 31-5).
Г.2.7 статическое размагничивание (): Уменьшение остаточной намагниченности под воздействием противоположно направленного магнитного поля; характеризуется отношением []/.
Г.2.8 продольный коэффициент прямоугольности [=/()]: Отношение значения остаточной намагниченности (), сохраняющейся после приложения и удаления максимального поля (), к значению намагниченности () при максимальном приложенном поле (), измеренным вдоль продольной оси магнитной полосы.
Г.2.9 коэффициент остаточной намагниченности (=/): Отношение перпендикулярной остаточной намагниченности (), измеренной в направлении, перпендикулярном к поверхности магнитной полосы, к продольной остаточной намагниченности (), измеренной вдоль продольного направления магнитной полосы.
Г.2.10 перемагничивающее поле по наклону (): (-)/, где , и , разность между значениями напряженности магнитного поля в точках пересечения статической петли гистерезиса () с и , деленная на коэрцитивную силу.
Г.2.11 перемагничивающее поле по производной (): Ширина дифференцированной статической кривой намагничивания () на половине высоты, деленная на значение коэрцитивной силы на той же кривой.
Г.3 Рекомендуемые характеристики
Рекомендуемые статические характеристики магнитной полосы большой коэрцитивной силы представлены в таблице Г.1.
Таблица Г.1 - Статические характеристики магнитного материала большой коэрцитивной силы
Параметр |
Обозначение |
Значение |
1 Коэрцитивная сила |
Не более 335 кА/м (4200 Э) | |
2 Статическое размагничивание |
|
Не более 0,20 |
3 Продольный коэффициент прямоугольности |
|
Не менее 0,80 |
4 Коэффициент остаточной намагниченности |
|
Не более 0,35 |
5 Перемагничивающее поле по наклону |
|
Не более 0,30 |
6 Перемагничивающее поле по производной |
|
Не более 0,50 |
Текст документа сверен по:
официальное издание
М.: ИПК Издательство стандартов, 2003