- USD ЦБ 03.12 30.8099 -0.0387
- EUR ЦБ 03.12 41.4824 -0.0244
Краснодар:
|
погода |
ГОСТ Р 8.629-2007
Группа Т88.1
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
Государственная система обеспечения единства измерений
МЕРЫ РЕЛЬЕФНЫЕ НАНОМЕТРОВОГО ДИАПАЗОНА
С ТРАПЕЦЕИДАЛЬНЫМ ПРОФИЛЕМ ЭЛЕМЕНТОВ
Методика поверки
State system for ensuring the uniformity of measurements.
Nanometer range relief measures with trapezoidal profile of elements.
Methods for verification
ОКС 17.040.01
Дата введения 2008-02-01
Предисловие
Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"
Сведения о стандарте
1 РАЗРАБОТАН Открытым акционерным обществом "Научно-исследовательский центр по изучению свойств поверхности и вакуума"
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 441 "Наукоемкие технологии" Федерального агентства по техническому регулированию и метрологии
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 21 мая 2007 г. N 97-ст
4 ВВЕДЕН ВПЕРВЫЕ
Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте национального Федерального агентства по техническому регулированию и метрологии в сети Интернет
1 Область применения
Настоящий стандарт распространяется на рельефные меры нанометрового диапазона с трапецеидальным профилем элементов (далее - рельефные меры), линейные размеры и материал для изготовления которых соответствуют требованиям ГОСТ Р 8.628. Рельефные меры применяют при измерении линейных размеров в диапазоне от 10 до 10 м.
Настоящий стандарт устанавливает методику первичной и периодических поверок рельефных мер.
Межповерочный интервал рельефной меры - один год.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие стандарты:
ГОСТ Р 8.628-2007 Государственная система обеспечения единства измерений. Меры рельефные нанометрового диапазона из монокристаллического кремния. Требования к геометрическим формам, линейным размерам и выбору материала для изготовления
ГОСТ Р ИСО 14644-2-2001 Чистые помещения и связанные с ними контролируемые среды. Часть 2. Требования к контролю и мониторингу для подтверждения постоянного соответствия ГОСТ Р ИСО 14644-1
ГОСТ Р ИСО 14644-5-2005 Чистые помещения и связанные с ними контролируемые среды. Часть 5. Эксплуатация
ГОСТ 12.1.040-83 Система стандартов безопасности труда. Лазерная безопасность. Общие положения
ГОСТ 12.2.061-81 Система стандартов безопасности труда. Оборудование производственное. Общие требования безопасности к рабочим местам
ГОСТ ИСО 14644-1-2002 Чистые помещения и связанные с ними контролируемые среды. Часть 1. Классификация чистоты воздуха
Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.
3 Термины и определения
В настоящем стандарте применены термины по РМГ 29 [1], а также следующие термины с соответствующими определениями.
3.1 рельеф поверхности твердого тела (рельеф поверхности): Поверхность твердого тела, отклонения которой от идеальной плоскости обусловлены естественными причинами или специальной обработкой.
3.2 элемент рельефа поверхности (элемент рельефа): Пространственно локализованная часть рельефа поверхности.
3.3 элемент рельефа в форме выступа (выступ): Элемент рельефа, расположенный выше прилегающих к нему областей.
3.4 геометрическая форма элемента рельефа: Геометрическая фигура, наиболее адекватно аппроксимирующая форму минимального по площади сечения элемента рельефа.
Пример - Трапецеидальный выступ, представляющий собой элемент рельефа поверхности, геометрическая форма минимального по площади сечения которого наиболее адекватно аппроксимируется трапецией.
3.5 мера физической величины (мера величины): Средство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в узаконенных единицах и известны с необходимой точностью [1].
3.6 рельефная мера: Средство измерений длины, представляющее собой твердый объект, линейные размеры элементов рельефа которого установлены с необходимой точностью.
Примечание - Рельефная мера может быть изготовлена с помощью средств микро- и нанотехнологии или представлять собой специально обработанный объект естественного происхождения.
3.7 рельефная мера нанометрового диапазона: Мера, содержащая элементы рельефа, линейный размер хотя бы одного из которых менее 10 м.
3.8 рельефная мера нанометрового диапазона с трапецеидальным профилем элементов (рельефная мера): Рельефная мера нанометрового диапазона, геометрическая форма элементов рельефа которой представляет собой трапецию.
3.9 пиксель: Наименьший дискретный элемент изображения, получаемый в результате математической обработки информативного сигнала.
3.10 сканирование элемента исследуемого объекта (сканирование): Перемещение зонда вдоль выбранного отрезка на исследуемом объекте с одновременной регистрацией информативного сигнала.
3.11 изображение на экране монитора микроскопа (видеоизображение): Изображение на экране монитора микроскопа в виде матрицы из n строк по m пикселей в каждой, яркость которых прямо пропорциональна значению сигнала соответствующей точки матрицы.
Примечание - Яркость пикселя определяется силой света, излучаемой им в направлении глаза наблюдателя.
3.12 видеопрофиль информативного сигнала (видеопрофиль): Графическая зависимость значения информативного сигнала, поступающего с детектора микроскопа, от номера пикселя в данной строке видеоизображения.
3.13 масштабный коэффициент видеоизображения микроскопа (масштабный коэффициент): Отношение длины исследуемого элемента на объекте измерений к числу пикселей этого элемента на видеоизображении.
Примечание - Масштабный коэффициент определяют для каждого микроскопа.
3.14 Z-сканер сканирующего зондового атомно-силового микроскопа (Z-сканер): Устройство сканирующего зондового атомно-силового микроскопа, позволяющее в процессе сканирования удерживать зонд в вертикальном положении и обеспечивающее постоянное расстояние между острием зонда и поверхностью исследуемого объекта.
4 Операции и средства поверки
4.1 При проведении первичной и периодических поверок рельефной меры должны быть выполнены операции и применены средства поверки, указанные в таблице 1.
Таблица 1 - Операции и применяемые средства поверки
Наименование операции |
Номер пункта настоящего стандарта |
Наименование средства поверки |
Обязательность проведения операции |
Внешний осмотр |
8.1 |
Вспомогательный оптический микроскоп (увеличение не менее 400), входящий в комплект поставки сканирующего зондового атомно-силового микроскопа |
+ |
Опробование |
8.2 |
Сканирующий зондовый атомно-силовой микроскоп. |
+ |
Определение метрологических характеристик |
8.3 |
Атомно-силовой микроскоп. |
+ |
Примечание - Знак "+" обозначает необходимость проведения операции. |
4.2 Допускается применять другие средства поверки, точность которых соответствует требованиям настоящего стандарта.
5 Требования к квалификации поверителей
К поверке рельефных мер допускаются лица, имеющие опыт работы с атомно-силовыми микроскопами (далее - АСМ) и двухлучевыми лазерными гетеродинными интерферометрами, знающие требования настоящего стандарта и аттестованные по [2].
6 Требования безопасности
При поверке рельефных мер необходимо соблюдать правила электробезопасности по [3], [4], требования лазерной безопасности по ГОСТ 12.1.040 и требования по обеспечению безопасности на рабочих местах по ГОСТ 12.2.061, [5], [6].
7 Условия поверки и подготовка к ней
7.1 При проведении поверки должны быть соблюдены следующие условия:
- температура окружающей среды |
(20±3) °С; |
|||
- относительная влажность воздуха |
не более 80%; |
|||
- атмосферное давление |
(100±4) кПа; |
|||
- напряжение питающей сети |
220 В; |
|||
- частота питающей сети |
50 Гц. |
Разность значений параметров окружающей среды до и после окончания поверки не должна превышать указанных в приложении А.
7.2 Помещение (зона) размещения средств измерений для поверки рельефных мер должно быть в эксплуатируемом состоянии и обеспечивать класс чистоты не более класса 8 ИСО по взвешенным в воздухе частицам размерами 0,5 и 5 мкм и концентрациями, определенными по ГОСТ ИСО 14644-1. Периодичность контроля состояния помещения (зоны) определяют по ГОСТ Р ИСО 14644-2. Эксплуатацию помещения (зоны) осуществляют по ГОСТ Р ИСО 14644-5.
7.3 Перед началом поверки необходимо подать напряжение питания на основные средства поверки и подготовить их к работе в соответствии с инструкциями по эксплуатации.
8 Проведение поверки
8.1 Внешний осмотр
8.1.1 При внешнем осмотре поверяемой рельефной меры должно быть установлено:
- соответствие комплекта поставки данным, приведенным в паспорте (формуляре) на рельефную меру;
- отсутствие механических повреждений футляра, в котором осуществлялось хранение и транспортирование рельефной меры.
8.1.2 Рельефную меру извлекают из футляра, проводят предварительный визуальный внешний осмотр для выявления возможных повреждений и с помощью специальных зажимов устанавливают меру на рабочий стол АСМ. При этом должно быть обеспечено плотное прилегание нижней плоскости подложки меры к поверхности рабочего стола АСМ.
8.1.3 С помощью вспомогательного оптического микроскопа осматривают и проверяют качество поверхности рельефной меры. Шаговая структура поверхности меры должна быть однородной, при этом на примерно 75% поверхности меры не должно быть повреждений маркерных линий, искажений краев элементов рельефа в виде впадин и выступов, соизмеримых с шириной элементов рельефа.
8.2 Опробование
8.2.1 С помощью вспомогательного оптического микроскопа устанавливают зонд АСМ в положение, соответствующее началу сканирования поверяемого элемента рельефной меры.
Начальное положение определяют следующим образом: зонд АСМ устанавливают на плоскость нижнего основания на расстоянии от поверяемого элемента, равном не менее 20% и не более 50% ширины нижнего основания поверяемого элемента. Аналогично определяют конечное положение зонда АСМ при сканировании.
8.2.2 На неподвижном элементе в камере образцов АСМ устанавливают зеркало лазерного интерферометра, предназначенное для формирования опорного луча, а на рабочем столе АСМ - другое зеркало для формирования информативного луча. Лазерный интерферометр (далее - горизонтальный лазерный интерферометр) располагают вдоль оси, совпадающей с горизонтальным направлением сканирования (далее - ось абсцисс).
Второй комплект зеркал устанавливают на Z-сканере и на неподвижном элементе камеры образцов АСМ. Эти зеркала предназначены для формирования информативного (на Z-сканере) и опорного (на неподвижном элементе камеры) лучей, что позволяет регистрировать перемещение Z-сканера АСМ в вертикальном направлении сканирования (далее - ось ординат). Второй лазерный интерферометр (далее - вертикальный лазерный интерферометр) устанавливают соответственно расположению зеркал.
Горизонтальный и вертикальный лазерные интерферометры должны обеспечивать регистрацию информативных и опорных лучей в процессе сканирования поверяемого элемента. Необходимо также обеспечить для каждого интерферометра взаимную параллельность информативного и опорного лучей при всех положениях стола и Z-сканера АСМ в процессе сканирования поверяемого элемента. Допустимый угол расхождения опорного и информативного лучей для каждого интерферометра не должен превышать 1'.
Взаимное расположение двух лазерных интерферометров в комплекте с зеркалами позволяет в процессе сканирования поверяемого элемента рельефной меры проводить регистрацию видеопрофиля элемента и одновременно с этим регистрацию перемещения рельефной меры и Z-сканера двумя лазерными интерферометрами.
8.2.3 В соответствии с инструкцией по эксплуатации АСМ проводят пробное сканирование поверяемого элемента рельефа. При этом:
- выполняют юстировку зеркал в соответствии с инструкцией по эксплуатации лазерных интерферометров;
- путем перемещения и изменения угла наклона детектора лазерного интерферометра обеспечивают совпадение направлений горизонтального сканирования и вертикального перемещения Z-сканера АСМ с соответствующими направлениями информативных и опорных лучей.
8.3 Определение метрологических характеристик
8.3.1 Проводят измерение параметров окружающей среды и проверяют, соблюдаются ли требования, указанные в 7.1.
8.3.2 В соответствии с инструкциями по эксплуатации АСМ и лазерных интерферометров проводят сканирование поверяемого элемента рельефной меры. Одновременно с помощью лазерных интерферометров проводят измерения горизонтального перемещения подвижной части рабочего стола АСМ и вертикального перемещения Z-сканера АСМ.
Сечение выступа трапецеидальной формы и места начального и конечного положений зонда АСМ приведены на рисунке 1.
- ширина нижнего основания выступа; - ширина верхнего основания выступа; - высота выступа;
- значение проекции наклонной стенки на плоскость нижнего основания выступа
Рисунок 1 - Сечение поверяемого элемента рельефной меры
Видеопрофиль, соответствующий этому выступу, представлен на рисунке 2.
- точка на видеопрофиле, соответствующая начальному положению зонда АСМ при сканировании;
- точка на видеопрофиле, соответствующая конечному положению зонда при сканировании;
- высота выступа, измеренная по видеопрофилю; - разность абсцисс конечной
и начальной точек горизонтального сканирования, соответствующая величине горизонтального
перемещения подвижной части рабочего стола АСМ, вычисленная по видеопрофилю
Рисунок 2 - Видеопрофиль сечения поверяемого элемента рельефной меры,
приведенного на рисунке 1 (направление сканирования - слева направо)
8.3.3 Для определения горизонтального перемещения подвижной части рабочего стола АСМ измеряют:
- фазовый сдвиг между информативным и опорным лучами горизонтального лазерного интерферометра , рад, до начала сканирования; при этом зонд АСМ должен находиться в начальной точке, а все элементы АСМ должны быть в неподвижном состоянии (далее - начальный фазовый сдвиг для горизонтального лазерного интерферометра);
- целое число полос интерференции , соответствующее значению фазового сдвига между опорным и информативным лучами горизонтального лазерного интерферометра при сканировании поверяемого элемента по 8.3.2;
- значение дробной части фазового сдвига между опорным и информативными лучами горизонтального лазерного интерферометра , рад, при сканировании поверяемого элемента по 8.3.2.
8.3.4 Для определения высоты вертикального перемещения Z-сканера АСМ измеряют:
- фазовый сдвиг между информативным и опорным лучами вертикального лазерного интерферометра , рад, до начала сканирования; при этом зонд АСМ должен находиться в начальной точке, а все элементы АСМ должны быть в неподвижном состоянии (далее - начальный фазовый сдвиг для вертикального лазерного интерферометра);
- целое число полос интерференции , соответствующе значению фазового сдвига между опорным и информативным лучами вертикального лазерного интерферометра при сканировании поверяемого элемента по 8.3.2;
- значение дробной части фазового сдвига между опорным и информативными лучами вертикального лазерного интерферометра , рад, при сканировании поверяемого элемента по 8.3.2.
8.3.5 Проводят измерение параметров окружающей среды и проверяют, соблюдаются ли требования, указанные в 7.1.
8.4 Оформление протокола поверки
Результаты измерений параметров рельефной меры по 8.3.2 и 8.3.3, а также приведенных на рисунке 2, оформляют в виде протокола. Также в протоколе указывают данные условий поверки до начала и после окончания измерений по 8.3.1 и 8.3.5.
Форма протокола - произвольная.
9 Обработка результатов измерений
9.1 Вычисление фазового сдвига между опорным и информативным лучами горизонтального лазерного интерферометра
Фазовый сдвиг , рад, между опорным и информативными лучами горизонтального лазерного интерферометра при сканировании поверяемого элемента вычисляют по формуле
,
где - целое число полос интерференции, соответствующее значению фазового сдвига между опорным и информативным лучами горизонтального лазерного интерферометра, измеренное по 8.3.3;
- значение дробной части фазового сдвига между опорным и информативными лучами горизонтального лазерного интерферометра, измеренное по 8.3.3, рад;
- начальный фазовый сдвиг для горизонтального лазерного интерферометра, измеренный по 8.3.3, рад.
9.2 Вычисление горизонтального перемещения подвижной части рабочего стола АСМ при сканировании поверяемого элемента
Горизонтальное перемещение подвижной части рабочего стола , нм, от начального до конечного положения при сканировании поверяемого элемента вычисляют по формуле
,
где - длина волны излучения гелий-неонового лазера в вакууме, приведенная в паспорте (формуляре) на горизонтальный лазерный интерферометр, нм;
- фазовый сдвиг, вычисленный по 9.1, рад;
- показатель преломления воздуха при фактических значениях температуры окружающей среды, влажности воздуха и атмосферного давления, вычисленный по приложению А.
9.3 Вычисление масштабного коэффициента видеоизображения для оси абсцисс
Масштабный коэффициент видеоизображения , нм/пиксель, для оси абсцисс вычисляют по формуле
,
где - перемещение подвижной части рабочего стола АСМ при горизонтальном сканировании, вычисленное по 9.2, нм;
- разность абсцисс конечной и начальной точек горизонтального сканирования, соответствующая горизонтальному перемещению подвижной части рабочего стола АСМ, вычисленная по видеопрофилю (см. рисунок 2), пиксель.
9.4 Вычисление фазового сдвига между опорным и информативным лучами вертикального лазерного интерферометра при сканировании поверяемого элемента
Фазовый сдвиг , рад, между опорным и информативными лучами вертикального лазерного интерферометра при сканировании поверяемого элемента вычисляют по формуле
,
где - целое число полос интерференции, соответствующее фазовому сдвигу между опорным и информативным лучами вертикального лазерного интерферометра, измеренное по 8.3.4;
- значение дробной части фазового сдвига между опорным и информативными лучами вертикального лазерного интерферометра, измеренное по 8.3.4, рад;
- начальный фазовый сдвиг для вертикального лазерного интерферометра, измеренный по 8.3.4, рад.
9.5 Вычисление вертикального перемещения Z-сканера АСМ при сканировании поверяемого элемента
Вертикальное перемещение Z-сканера АСМ , нм, при сканировании поверяемого элемента вычисляют по формуле
,
где - длина волны излучения гелий-неонового лазера в вакууме, приведенная в паспорте (формуляре) на вертикальный лазерный интерферометр, нм;
- фазовый сдвиг, вычисленный по 9.4, рад;
- показатель преломления воздуха при фактических значениях температуры окружающей среды, влажности воздуха и атмосферного давления, вычисленный по приложению А.
9.6 Вычисление масштабного коэффициента видеоизображения для оси ординат
Масштабный коэффициент видеоизображения , нм/пиксель, для оси ординат вычисляют по формуле
,
где - вертикальное перемещение Z-сканера АСМ при сканировании поверяемого элемента, вычисленное по 9.5, нм;
- высота выступа, измеренная по видеопрофилю, пиксель.
9.7 Вычисление высоты выступа поверяемого элемента рельефа
Высоту выступа , нм, вычисляют по формуле
,
где - масштабный коэффициент видеоизображения для оси ординат, вычисленный по 9.6, нм/пиксель;
- высота выступа, измеренная в пикселях по видеопрофилю поверяемого элемента рельефа.
9.8 Вычисление вспомогательной величины для определения ширины верхнего основания выступа поверяемого элемента рельефа
При определении ширины верхнего основания трапецеидального выступа , используют вспомогательную величину, для вычисления которой:
- вычисляют производную по горизонтальной координате. Для видеопрофиля, изображенного на рисунке 2, результат такого вычисления приведен на рисунке 3;
- проводят анализ результатов вычисления производной видеопрофиля по координате и вычисляют вспомогательную величину , пиксель, которая равна разности соответствующих абсцисс точек, как показано на рисунке 3.
- ось абсцисс по 8.2.2; , - начальная и конечная точки положения
зонда АСМ при сканировании поверяемого элемента, расположенные по 8.2.1;
- ось ординат по значению производной величины видеосигнала по координате .
Рисунок 3 - Графическое изображение первой производной видеопрофиля
по координате в направлении горизонтального перемещения подвижной части стола АСМ
9.9 Вычисление ширины верхнего основания трапецеидального выступа
Ширину верхнего основания выступа , нм, вычисляют по формуле
,
где - масштабный коэффициент видеоизображения для оси абсцисс, вычисленный по 9.3, нм/пиксель;
- вспомогательная величина, вычисленная по 9.8, пиксель.
9.10 Вычисление ширины нижнего основания трапецеидального выступа
Ширину нижнего основания трапецеидального выступа , нм, вычисляют по формуле
,
где - ширина верхнего основания поверяемого выступа, вычисленная по 9.9, нм;
- высота поверяемого выступа, вычисленная по 9.7, нм.
9.11 Вычисление проекции наклонной стенки на плоскость нижнего основания выступа
Проекцию наклонной стенки на плоскость нижнего основания выступа , нм, вычисляют по формуле
,
где - высота выступа, вычисленная по 9.7, нм.
9.12 Погрешность измерений
Абсолютные погрешности измерений значений , , и поверяемого элемента рельефной меры не превышают 0,1 нм при условии использования средств поверки, обеспечивающих погрешности измерений не хуже указанных в 4.1.
10 Оформление результатов поверки
10.1 Результаты поверки оформляют в виде свидетельства установленной формы по [7].
10.2 На оборотной стороне свидетельства о поверке и в паспорте (формуляре) на рельефную меру должны быть указаны значения всех поверенных параметров рельефной меры, приведенных на рисунке 1.
Приложение А
(справочное)
Вычисление показателя преломления воздуха
А.1 Исходные данные
При вычислении показателя преломления воздуха исходными данными являются следующие параметры окружающей среды:
- температура , °C;
- атмосферное давление , Па;
- относительная влажность , %.
Параметры окружающей среды измеряют до начала и после окончания измерений, при этом разность показаний должна быть не более:
- температуры окружающей среды - ±1 °С;
- атмосферного давления - ±300 Па;
- относительной влажности воздуха - ±10%.
А.2 Константы для вычисления показателя преломления воздуха
При вычислениях используют константы, приведенные в таблице А.1.
Таблица А.1 - Константы для вычисления показателя преломления воздуха
Обозначение константы |
Числовое значение |
|
8342,54 |
|
2406147 |
|
15998 |
|
96095,43 |
0,601 | |
0,00972 | |
0,003661 |
А.3 Вычисление вспомогательной величины
Вспомогательную величину вычисляют по формуле
,
где , - значения длин волн излучения в вакууме гелий-неоновых лазеров по 6.2 и 6.5, нм, соответственно.
А.4 Вычисление вспомогательной величины
Вспомогательную величину вычисляют по формуле
,
где , , - константы по А.2;
- вспомогательная величина, вычисленная по А.3.
А.5 Вычисление вспомогательной величины
Вспомогательную величину вычисляют по формуле
,
где , , - константы по А.2;
- температура окружающей среды, °С;
- атмосферное давление, Па.
А.6 Вычисление вспомогательной величины
Вспомогательную величину вычисляют по формуле
,
где - атмосферное давление, Па;
- вспомогательная величина, вычисленная по А.4;
- вспомогательная величина, вычисленная по А.5;
- константа по А.2.
А.7 Вычисление парциального давления паров воды
Парциальное давление паров воды , Па, вычисляют по формуле
,
где - относительная влажность воздуха, %;
- давление насыщенного водяного пара при температуре окружающей среды , вычисленное по А.8-А.14, Па.
А.8 Константы для вычисления давления насыщенного водяного пара
Для вычисления давления насыщенного водяного пара при температуре окружающей среды , °C, используют константы, приведенные в таблице А.2.
Таблица А.2 - Константы для вычисления давления насыщенного водяного пара
Обозначение константы |
Значение |
1167,05214528 | |
-724213,167032 | |
-17,0738469401 | |
12020,8247025 | |
-3232555,03223 | |
14,9151086135 | |
-4823,26573616 | |
405113,405421 | |
-23,8555575678 | |
650,175348448 |
А.9 Вычисление вспомогательной величины
Вспомогательную величину вычисляют по формуле
,
где - температура окружающей среды, °С ;
, - константы пo A.8.
А.10 Вычисление вспомогательной величины
Вспомогательную величину вычисляют по формуле
,
где - вспомогательная величина, вычисленная по А.9;
, - константы по А.8.
А.11 Вычисление вспомогательной величины
Вспомогательную величину вычисляют по формуле
,
где , , - константы по А.8;
- вспомогательная величина, вычисленная по А.9.
А.12 Вычисление вспомогательной величины
Вспомогательную величину вычисляют по формуле
,
где , , - константы по А.8;
- вспомогательная величина, вычисленная по А.9.
А.13 Вычисление вспомогательной величины
Вспомогательную величину вычисляют по формуле
,
где - вспомогательная величина, вычисленная по А.11;
- вспомогательная величина, вычисленная по А.10;
- вспомогательная величина, вычисленная по А.12.
А. 14 Вычисление давления насыщенного водяного пара
Давление насыщенного водяного пара , Па, вычисляют по формуле
,
где - вспомогательная величина, вычисленная по А.12;
- вспомогательная величина, вычисленная по А.13.
А.15 Вычисление показателя преломления воздуха
Показатель преломления воздуха вычисляют по формуле
,
где - вспомогательная величина, вычисленная по А.6;
- вспомогательная величина, вычисленная по А.3;
- парциальное давление паров воды, вычисленное по А.7, Па;
- температура окружающей среды, °С.
Библиография
[1] РМГ 29-99 |
Государственная система обеспечения единства измерений. Метрология. Основные термины и определения |
[2] ПР 50.2.012-94 |
Государственная система обеспечения единства измерений. Порядок аттестации поверителей средств измерений |
[3] Правила технической эксплуатации электроустановок потребителей (утверждены приказом Минэнерго России от 13.01.2003 г. N 6; зарегистрированы Минюстом России 22.01.2003 г., peг. N 4145) | |
Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок | |
[5] Санитарно-эпидемиологические правила и нормативы |
Электромагнитные поля в производственных условиях |
[6] Санитарно-эпидемиологические правила и нормативы |
Гигиенические требования к персональным электронно-вычислительным машинам и организации работы |
[7] ПР 50.2.006-94 |
Государственная система обеспечения единства измерений. Порядок проведения поверки средств измерений |